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Abstract

This work presents several new methods for measurement of turbulence in the

Planetary Boundary Layer (PBL). These methods use data from WSR 88-D Next-

Generation Radar (NEXRAD) weather radars, Numerical Weather Prediction (NWP)

forecasts, and cell phone scintillation in order to estimate C2
n, a common scalar mea-

sure of PBL turbulence, as measured by a visible light or Infra-Red (IR) system. The

methods presented here can estimate C2
n from NWP alone, or NWP can be combined

with NEXRAD or cell signals (RF instruments) to remotely and passively estimate

C2
n with high spatial and temporal resolution. Previously, no method was known for

accurately estimating the effects of turbulence on visible and IR systems based on

measurements from RF instruments.

In order to show how well these new approaches perform in comparison to existing

techniques, estimates of C2
n are made using the various methods and are compared

with measurements taken using standard 880nm large aperture scintillometers. Com-

parisons are made in every month of the year in two environments: temperate sub-

urban, and high-mountain desert. Results show consistent improvement of accuracy

by the newer methods over existing estimation methods. The results also suggest

removing the common assumption that visible and IR C2
n can be estimated from

temperature field perturbations alone. Instead, water content and non-hydrostatic

pressure perturbations should be included when estimating C2
n.

A survey of noise and uncertainty is also presented. This analysis of different noise

sources in the radar, cell phone, and NWP data is of practical utility as it outlines

limits of applicability, and performance that can be expected for each method under

a variety of conditions.
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METHODS FOR PASSIVE REMOTE TURBULENCE CHARACTERIZATION

IN THE PLANETARY BOUNDARY LAYER

I. Introduction & Background

This dissertation presents and compares several methods for measuring turbulence

in the atmosphere. This research was motivated by a need to characterize the PBL

with respect to its impact on visible-light and IR systems. Turbulence in the PBL lim-

its the capabilities of free-space optical communications, imaging, and High-Energy

Laser (HEL) systems. The impact of turbulence on these systems is commonly char-

acterized by the so-called index of refraction structure function constant, C2
n. Larger

values of C2
n indicate worse propagation conditions for these systems.

For several reasons, it would be desirable to be able to measure C2
n within a region

of operation. As a part of product development, systems will be tested in a variety

of environments, and knowing C2
n allows a system’s performance to be evaluated

for validation. For HEL systems, there is also an operational need for real-time

turbulence measurement. While HEL systems measure the impact of turbulence just

before firing. It only does so on the path to each target (often assumed to be a high-

speed vehicle, like a missile). In the case where a HEL is best suited, engaging several

inbound high-velocity targets at once, a wide-area volumetric measure of C2
n would

allow for a fire control system to prioritize targets to assure the highest probability

of successful engagement.

Available C2
n measurement methods do not provide adequate tools to meet these

needs. Systems with sufficient accuracy and resolution are limited by cumbersome

instrumentation. Methods which allow for sufficiently large volume measurements
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are limited to very coarse resolutions, or poor accuracy. The techniques presented

here are the first which simultaneously provide the accuracy, resolution, and volume

sufficient to be of practical use for product validation in the PBL, or as the basis for

a HEL fire-control system.

New techniques adapted from existing research, and physical interpretations of

turbulent eddy structure will be compared against conventional methods. This first

chapter reviews past research and literature which has been an immense help in devel-

oping this subject. The first three sections of the chapter will present an introduction

of contemporary turbulence theory, and practical motivation for turbulence research.

Following this will be an overview of some of the most common methods for char-

acterizing turbulence. This is followed by a section describing what new techniques

are being presented. Finally, the remaining sections present a short primer on NWP,

NEXRAD radar, and cell phone signals.

The next chapter will describe in detail both existing and novel methods and

techniques presented here, as well as metrics for comparing their performance to

more contemporary techniques. Following this is a chapter describing the sources of

uncertainty and noise in both the standard and new methods. The impact of these

factors is also presented with the hope of providing a metric for when and where the

various techniques are appropriate. The following chapter will present the results of

the research, and is organized by technique. The final chapter presents a summary of

conclusions, and suggestions for follow-on research.

1.1 Why Measure C2
n

There are two sides to the pragmatic motivation for this research: why turbulence

detection and measurement is important, and how Radio Frequency (RF) measure-

ments may improve and extend our capability to measure turbulence, even turbulence
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which affects optical wavelengths. This section will address why turbulence measure-

ment is important, and the limitations of current methods. A technical motivation

for the use of RF is presented in Section 1.5.

A significant driver of this research is the need for a better understanding of PBL

turbulence. Our understanding is limited by our inability to adequately measure or

predict (model) turbulence in the atmosphere. Current methods are only able to

measure a limited volume of the atmosphere. Because they require in-situ instru-

mentation, there is significant cost in setting up and maintaining measurements in a

given area. Practical prediction and modeling methods are computationally limited

to resolution of time and space which is much greater than than the scales involved in

turbulence. Turbulence studies are important in many disciplines. Turbulence affects

the drag on objects as small as a bullet in flight and is a critical to the formative

processes of stars. Understanding found in PBL turbulence studies like this one can

have impacts in a wide range of other engineering and theoretical endeavors.

Developing the capability to overcome current measurement and modeling lim-

itations have practical utility, beyond satisfying our need to better understand the

world around us. We know that PBL turbulence is the primary mechanism for mix-

ing and advection within the PBL. [33] NWP and plume-dispersion models can both

be improved if current, wide-area turbulence information is available for inclusion.

Furthermore, turbulence is a critical component of the atmosphere and surface in-

teractions which affect our ability to predict weather. Improved measurements of

turbulent activity can help improve our ability to model energy and moisture diffu-

sion in the PBL.

Anyone who has flown through turbulent air knows that turbulence can create

violent jarring of aircraft in flight. In addition to being unpleasant, this increases

stress and wear on the aircraft structure. Both safety, comfort, and system longevity
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can be improved by modifying flight paths to avoid turbulence. Adequate real-time

turbulence detection could allow aircraft to reroute through smoother air, and has

been the subject of research. [3, 18]

In addition to flight concerns, turbulence also has a significant effect on optical

systems. These effects include the well known twinkle of starts, limitations on the

resolution of large telescopes, data throughput limitations in laser communications

systems, and impairment of the effectiveness of high-powered laser weapons [56]. For

a given path between two points the ability to predict turbulence-induced scintillation

would allow for improved system optimization. A characteristic of turbulence first

noted by Taylor [69] is that turbulent eddies evolve slowly when compared to typical

rates of advection in the atmosphere. Dubbed the frozen flow hypothesis, it predicts

that the impact of turbulence in the near-future (on the order of minutes) can be

predicted if one knows the current, volumetric state of turbulence in a sufficiently

large area, and the direction and magnitude of the mean wind. For example, say

turbulence can be predicted in the short term for a transmitter to receiver path in a

laser communication system. Communications-encoding schemes could be switched as

needed to best suit the propagation conditions. Similarly, a HEL fire control system,

tracking a fast moving target would be better able to choose when to fire in order

to ensure a high probability of success on every firing. In addition to performance

enhancement, improved measurement methods are helpful for testing and evaluation

of a system’s response to turbulence. In many cases, the methods presented in this

work can provide a convenient, cost effective measure of the turbulence present during

testing, where measurement or modeling by conventional methods is not available or

sufficient.

Knowing that turbulence affects aviation, weather, aerosol dispersion, and optical

systems leads to the question: “when and where do we have to cope with turbulence?”
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Here at the bottom (lowest 1000m or so) of the atmosphere, turbulence is essentially

constant. [33,66] Since most of what we humans do occurs in this region, it’s apparent

that turbulence is around us most of the time. Perhaps it’s better said that most of us

are working in or near the presence of turbulence all of the time. So PBL turbulence

has a persistent and direct impact on the performance of many endeavors.

In order to present additional capabilities that RF can provide for turbulence mea-

surement, it’s helpful to understand other ways that we measure turbulence. Turbu-

lence is typically studied using statistical methods which focus on correlation theory

and structure functions [12, 32, 67]. Techniques for obtaining structure functions are

presented in Section 1.4 and their use is summarized here.

These structure functions describe, in a statistical sense, the spatial and temporal

perturbations of a field. In this case, the perturbations are assumed to be due to

turbulence. A structure function for a particular field can be computed directly based

on functions which describes the field. While these functions are not known, based

on statistical arguments, it is assumed that the structure functions have a specific

algebraic form. Measurements are used to estimate the structure function constant,

C2
φ. Here, φ is the functional value of the field. It can be real, complex or of vector

field. This process is much the same as statistical approaches used in other disciplines.

For example, many processes are assumed to have a probability distribution function

(PDF) with a Gaussian form. Data are then sampled (realizations from the true

distribution with noise), and the mean and variance of a Gaussian PDF are estimated

from the sampled data. This process is analogous the one used for structure functions,

where the structure function is like the PDF, the structure function form is like the

Gaussian form, and fitting the constant C2
φ is much like fitting the mean of the

assumed form of a Gaussian PDF to the data. While it is true that all approaches

here estimate C2
φ, use of established techniques will be referred to as measurement of

5



www.manaraa.com

C2
φ, while estimation using new techniques is referred to as estimation of C2

φ.

Measurement of structure function constants may be accomplished by using ap-

propriate measurement instruments (often thermal and wind probes) which are dis-

tributed over a given area. Similarly, samples may be taken from NWP volumetric

grids. Alternatively the structure function constant of the index of refraction C2
n can

be inferred using a point source or laser scintillometer. This device simplifies tur-

bulence measurement by requiring only a transmitter and receiver to be set up. An

example of the scintillometer measurement method is also outlined in Section 1.4 and

further details are available from scintillometer manufacturers [62]. It is also possible

to convert between related structure function constants, like temperature, C2
T , and

index of refraction, C2
n.

1.2 Turbulence and Structure Functions

Fluid flows can be categorized as either laminar or turbulent. Turbulent flows are

chaotic in nature and are characterized by swirls of varying size and shape (Figure

1). These whorls make up a complex but identifiable structure. In the short term,

it is possible to predict the evolution of the flow. However, as with other chaotic

processes, as time goes on predictions become more and more likely to be invalid.
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Figure 1. False color image of turbulence induced by a submerged jet made visible by

laser induced fluorescence. The image is owned by C. Fukushima and J. Westerweel,

Technical University of Delft, The Netherlands, and is used without permission or

endorsement of this work under the Creative Commons license.

The PBL is the lowest part of the troposphere, the layer which contains most of

the mass of the atmosphere. It is characterized by air that is generally well-mixed due

to turbulent motions. The depth of the layer varies from a few meters to well over a
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kilometer [57]. The dynamical variations are closely tied to the turbulence measure-

ments investigated here, and will be discussed in the next section. One direct impact

that this layer has on modern technologies is the disturbance of EM propagation by

turbulence [32, 68]. These disturbances are usually a hindrance to achieving “good”

propagation, and degrade system performance [12,14,39,76,77]. The primary reason

why turbulent flows disturb EM propagation is that they create a complex spatial

and temporal structure of the index of refraction, n. A measure of how much one can

expect n to vary over a given distance is C2
n. Generally, the larger C2

n, the greater

the impact that turbulence has on system performance.

Throughout this dissertation, turbulence will be characterized by the value C2
n.

C2
n is the structure function constant for the index of refraction structure function. In

practice, this term is used as a scalar measure of how turbulent an atmospheric flow

is. As mentioned in Section 1.1, this parameter is based on fitting measured data to

an expected form of the structure function for index of refraction. This section will

attempt to present a description of C2
n which provides an adequate familiarity with

what this scalar represents. For a more thorough technical development, the reader

may with to look at the works of Tatarskii, [67, 68], and Volumes I and III of the

series by Rytov, Tatarskii, and Kravtsov, [60].

Other structure function constants used in this work include the structure func-

tion constant for temperature, C2
T , pressure, C2

P , wind speed C2
v , and vapor pressure

C2
ev . The remainder of this section will present structure functions themselves, and

how they relate to turbulence. The role of the structure function is to describe how

the correlation of measurements varies with distance. For example, consider an ex-

periment where temperature is measured simultaneously at many locations above a

football field. Selecting one particular measurement, T0 one could then consider how

similar surrounding measurements might be to T0. It would be expected that mea-
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surements taken a few centimeters away (nearby) would be very similar to T0, while

measurements taken many meters away (distant) would be less similar to T0. The

temperature structure function for these measurements should describe how similar

one expects measurements to be as a function of spatial displacement. Within the

scope of a statistical description of measurements taken within a turbulent field, it

has been shown [36,37,52] that structure functions for particular quantities (including

those listed above) have the form of (4).

Structure functions address a need for a statistical theory which allows for analysis

of non-stationary functions. A non-stationary function is a function whose mean is

not fixed. For example, temperature over time in the atmosphere is a non-stationary

process. Consider taking temperature measurements every minute for a period of

time. If these temperatures are plotted over time, one would notice high and low

frequency variation. If these measurements are then averaged over each hour and

plotted, these hourly means will also show high and low frequency variation. This

process can be repeated, and regardless of the time span, days, weeks, months, years,

decades, and so forth there will still be variation in the plots. Therefore, the mean of

temperature is sensitive to the choice of which measurements to include, and does not

head to a fixed value as the number of measurements increases. The difficulty that

non-stationarity presents is that common tools which describe the process (spectral

density, probability density, and cumulative density) are no longer fixed.

A common way to measure turbulence, is to consider how much variance one

would expect to see in a measurable physical aspect of the fluid which is mixed by

the turbulence, say temperature as a function of position and time, T (~r, t). It was

found that correlation theory was insufficient to describe the statistics of T (~r, t) as

it did not have a stationary mean. Instead, the so-called structure-function was

proposed by Kolmogorov [36]. The structure function generalizes correlation theory
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to allow for a statistical description of functions without stationary means.

For many atmospheric processes, even while the mean is not stationary, the first

increment is approximately stationary. The first increment in the example temper-

ature field is the difference in temperatures taken at two times or locations, but

separated by a fixed interval. Say, the difference in measurements taken 1 minute

apart. Structure functions also describe expected differences in measurements taken

at different locations (as in the volume over a football field above), where variation

is taken with respect to ~r instead of t. For processes with stationary first increments,

similar techniques to those developed for stationary processes may be applied. For a

complex field ζ̃(~r) that varies over space, the structure function is defined as

Dζ̃(~r1, ~r2) =

〈∣∣∣ζ̃(~r1)− ζ̃(~r2)
∣∣∣2〉 . (1)

Further development of structure functions and correlation theory is presented in

[60, 67] and other sources. For purposes of this research, ζ(~r) is a real-valued field

which represents the local distribution of index of refraction, temperature, pressure,

vapor pressure, zonal wind, or meridional wind (n, T , P , ev, U, V ). By computing

the first increments of ζ(~r), the short range variation which is related to turbulence

induced perturbations is separated from the long range variation which is attributed

to other processes.

Further assumptions about the statistical nature of PBL fields are commonly

made, and carried through here. First, it is assumed that the structure function is

homogeneous. That is

Dζ(~r1, ~r2) = Dζ(~r1 − ~r2) = Dζ(~r) (2)

so that the structure function only depends on the difference between the points,

10



www.manaraa.com

not the points themselves. Second, the structure function is assumed to be isotropic.

That is

Dζ(~r) = Dζ(r) (3)

where r = |~r|. These assumptions are not always valid, but within the PBL, results

based on the locally homogeneous and isotropic assumption for eddies within the

inertial subrange agree well with observation [16,32,68].

Based on the statistically homogeneous, isotropic, and stationary first increment

assumptions, Kolmogorov and Obukov were able to show that there is a range of

lengths, r � L0 for which the spatial structure function of conserved passive additives

has the form [36,37,52]

Dφ(r) =


C2
φr

2/3 l0 � r � L0

C2
φl

2/3
0

(
r
l0

)2

r � l0

. (4)

In (4), φ is some scalar quantity, r is distance, l0 is what is known as the inner

scale of the turbulence, and L0 is the outer scale of the turbulence. It’s common to

see structure function constants for temperature (C2
T ), velocity (C2

v ), vapor pressure

(C2
ev), and index of refraction (C2

n). These structure function constants depend on,

and describe how strongly each quantity varies within a field. Here it is assumed that

perturbations in the field are generated by advection of fluid parcels by a turbulent

flow. While turbulent flows are present in a range of applications, this work is con-

cerned with turbulence in the PBL where l0 is on the order of a few centimeters and

L0 can be tens to hundreds of meters.

It can be seen from (4) that the structure function within a certain size, l0 �

r � L0, can be described using only the distance between measurements, r, and a

constant C2
φ. This form of the structure function is used to derive much of modern
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theory about the interaction of turbulence with propagating waves (such as EM and

sound waves). The range of eddy sizes l0 � r � L0, where Dφ(r) = C2
φr

2/3 is known

as the inertial subrange.

Structure functions are closely related to correlation functions. For processes with

a statistically homogeneous field, the covariance is

Ψζ(~r) = 〈ζ(~r1)ζ∗(~r1 − ~r)〉 − 〈ζ(~r1)〉 〈ζ∗(~r2)〉 , (5)

and it can be shown [60] that the structure function is

Dζ(~r) = 2[Ψζ(~0)−Ψζ(~r)]. (6)

The advantage of structure functions over correlation is that they exist for fields where

the correlation (and covariance) does not exist, and can be used to check for station-

arity before attempting to use correlation functions [16]. For PBL turbulence studies,

structure functions are often appropriate. In Section 1.4 methods are presented for

determining the structure function constants based on measurement.

1.3 Dynamics of The Planetary Boundary Layer

At the bottom of the Earth’s atmosphere is a relatively thin layer known as the

planetary boundary layer (PBL). The depth of this layer varies with time and location,

but is typically from several hundred meters to over a kilometer. The evolution of

winds, temperatures, aerosol concentrations, water vapor concentrations, and other

atmospheric quantities within the PBL is driven by the interaction forces between

the free atmosphere above and the Earth’s surface below. The dynamic evolution of

these quantities is directly related to turbulence. It is known that turbulence does

affect the EM propagation environment [12, 32]. The question to be answered is“by
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how much?” Understanding some of the atmospheric interactions is important for

determining if the sum of their effects on an EM signal is detectible, measurable, and

finally usable as a tool for inferring the state of turbulence in the PBL.

Whenever a fluid flows over a rigid surface, there is an interaction area called a

boundary layer where the dynamics of the fluid are controlled by the sheer stresses

between the flowing fluid and the stationary surface. [66] What happens in this layer

depends on the physical characteristics of the fluid, surface, and the flow. Flows are

generally divided into laminar (smooth) flows and turbulent flows. The Reynolds

number:

R ∝ v

viscosity
, (7)

parametrizes how laminar or turbulent a given flow is. Very large Reynolds numbers

indicate turbulent flows. A combination of very low viscosity for air, and high values

for the wind velocity in the free atmosphere causes the Earth to have a persistent

boundary layer. This layer varies in depth, as mentioned above, but the depth and

turbulent intensity can be attributed to a combination of several different processes

[30,66] The amount of turbulent kinetic energy (TKE) in a given area is controlled by

a balance of processes which transfer energy into and out of turbulent flows. Molecular

diffusion is constantly removing kinetic energy from turbulent flows and converting

it into heat. Mechanical production occurs in regions where velocity shear between

winds creates turbulence. This includes interaction with objects on the surface as

well as wind shear between adjacent streams of differing velocity. Advection by the

mean wind can serve to increase or decrease TKE in a given region. Buoyant forces

that arise from the vertical temperature profile can also act as a source or sink of

TKE. The TKE budget can be expressed symbolically as [30]:
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〈
D(TKE)

Dt

〉
= MP +BPL+ TR− ε. (8)

As used here and throughout the remainder of the document, the 〈·〉 indicates the

expected value when referring to processes (like the rate of change of TKE), or as

the arithmetic mean when referring to discretely sampled data. D indicates the

total derivative (the derivative in a coordinate frame following an air parcel), MP

indicates mechanical production, BPL is buoyant production or loss, TR is energy

lost or gained by transport and pressure forces, and ε is frictional dissipation of TKE

into heat.

The dynamics of the PBL are quite complex, as the various quantities are all

inter-related. For example, to track what happens with temperature just above the

surface one could start with considering the balance of heat flux from solar heating,

ground reflection, and ground emission. This can help to estimate changes in the

local temperature distribution. Next, one must consider how the winds will mix and

advect air of differing temperatures, so it’s important to know the local distribution

of temperatures and winds. At the same time, it’s important to consider how the

temperature gradients will affect the motion of the winds. As the air is being moved

to locations of different pressures, the parcel’s pressure will almost instantly equalize

with local pressure and acceleration induced gradients (more on those in Section 2.4)

and the temperature will change (more or less) in accordance with adiabatic thermo-

dynamic principals. So it’s important to know the local pressure gradients as well.

These changes in temperature, in conjunction with the pressure and moisture con-

tent may cause water vapor to change state, adding or removing heat from the air.

So the relative humidity, temperature, pressure and aerosol content (aerosols may

affect nucleation of water) are all important parts of TKE production and loss. At

the same time, evaporation rates and pressure gradients are dependent on the local
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temperature, humidity and winds as well. If a bit of warm, moist air is moved up (as

often happens due to wind convection or buoyant forces and heating of the air by the

surface) the water vapor may condense into a cloud. The cloud will, in turn, change

the original solar heating process. While simple compared to full PBL dynamics,

this scenario shows how none of the different parameters: solar heating, temperature,

wind, humidity, and precipitation can be considered independently. This interrelation

makes it hard to understand any one process without knowledge of several others,

but it also means that the state of one parameter (say temperature) carries with it

information about all the others. In developing the radar C2
n corrections, this made

it possible to do the correction using just a few parameters rather than trying to

track every one that could affect the refractivity of air for the radar. This section

will attempt to outline a basic model for the dynamics of the PBL. A more complete

treatment is available in meteorology texts including [30,33,66].

While the total interaction is complicated, general PBL dynamics can be under-

stood in relation to the diurnal cycle. Because turbulence moves air about, causing the

temperature to respond adiabatically to changes in pressure, temperature discussions

can often be simplified by the introduction of potential temperature, θ. Potential tem-

perature is defined as the temperature a parcel of air would be at, if it were brought

adiabatically to standard pressure (1000mb).

Land tends to heat quickly during the day. Because of this, the temperature of

the air near the surface becomes warmer than the air in the upper PBL. Under these

conditions the potential temperature θ decreases with height, dθ/dz < 0. An air

parcel that begins to rise cools adiabatically due to the pressure drop, but because

dθ/dz < 0, the parcel is still warmer than the air around it. Buoyant forces accelerate

the air upward toward the capping temperature inversion at the top of the boundary

layer (where θ increases quickly with height). This air then displaces cooler air down,
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which can then be heated by the ground and continue the cycle. This process creates

TKE through buoyant production, and tends to mix the air throughout the PBL.

Thus, during the day the PBL is typically unstable, deep and well-mixed. At dusk,

insolation drops off and the ground begins to cool. Under clear or partly cloudy skies,

the surface cools more quickly than the air, and dθ/dz will begin to increase. Buoy-

ant production ceases as the atmosphere goes through a quiescent period of neutral

stability (dθ/dz becomes approximately zero). As night goes on, dθ/dz continues to

increase (unless cloudy skies absorb and re-radiate energy back toward the ground)

creating a stable PBL. Under these conditions buoyancy damps vertical motions be-

cause air which is advected up has a lower temperature than the surrounding air and

thus sinks back down. This PBL is typically much more shallow than the daytime

PBL, and is characterized as stable because of the buoyant feedback which suppresses

vertical motions. Above this stable PBL is a residual layer where turbulent eddies

from the previous day gradually spin down over the night.

As C2
n is closely related to how turbulent an atmosphere is, it can be used to

signify (roughly) TKE. For example, Figure 2 shows C2
n vs height and time from a

full day on September 4, 2013. Nearby observations recorded clear skies throughout

the day, with a high of 27.2oC and a low of 8.9oC. Surface winds were calm in

the early morning, increased to about 6kn (3.1m · s−1) by noon, and stayed steady

throughout the afternoon. The reduction in C2
n at dawn is readily apparent, and to

a lesser extent the dusk quiescent period may also be seen. During these times, the

potential temperature gradient, dθ/dz, goes to zero, and the BPL term of (8) also

becomes minimal. As the ground warms though the day, dθ/dz becomes negative

(unstable).
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Figure 2. NEXRAD measured C2
n vs height AGL and local time of day from 4 Septem-

ber 2013 . Each sphere represents one measurement from a NEXRAD bin. The sphere

color and placement on the x-axis indicate the measured log10(C2
n) value. The location

on the y-axis indicates which time the spheres came from. The location on the z-axis

indicates the height of the center of the 250 × 250 × 250m radar bin each measurement

came from. Data are taken from a 2× 2× 1.5km volume approximately 14.5m from the

Wilmington Ohio (KILN) NEXRAD. Local sunrise occurred at 0706 EDT and sunset

occurred at 2001 EDT.

The increased C2
n after sunset is not indicative of typical PBL dynamics, but is

often seen in NEXRAD measured data (and sometimes to a lesser extent in scintil-

lometer data). This increase may be due to the increased refractive bending that

occurs at night. The vertical hydrostatic pressure gradient causes the radar beam

to bend down toward the earth (with a radius of curvature about four-thirds of the

Earth’s radius). The vertical temperature gradient also causes the beam to bend.

During the day, the vertical temperature gradient is significantly reduced. Reduction

in the resulting bending causes the beam to remain higher and less of the beam and
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side-lobes to intersect the ground. At night, the ground cools quickly due to radiative

loss, and the potential temperature begins to increase more strongly with height. This

causes the beam to bend more sharply downward, increasing ground clutter (which

manifests as raised C2
n). Doppler filtering and surface clutter maps are used to reduce

clutter. Section 4.8 explores this topic in detail, with the conclusion that significant

clutter remains in the NEXRAD data, even after filtering. In addition to the ground

clutter, there may also be biological echoes in the data.

The increased nocturnal C2
n values may not be entirely due to clutter and noise.

Scintillometer data from the nearby (30km away) Dayton scintillometer often showed

nighttime C2
n which is as high as daytime C2

n. For example, in Figure 3 the measured

C2
n on the evening of 4 September was nearly as high as the daytime C2

n. This is

unusually high for the scintillometer, for which it is typically expected that nighttime

C2
n will be 1 to 2 orders of magnitude below daytime C2

n. Data from 2, 3, and 6

September showed the more common pattern of lower nocturnal C2
n. Because the

radar sees a much greater nocturnal increases than the scitillometer, it may be that

while TKE is dropping, the water vapor structure function C2
ev is increasing. As

NEXRAD C2
n depends much more on C2

ev than the scintillometer C2
n does, an increase

in C2
ev would be expected to impact the NEXRAD measurements much more. The

combination suggests that these elevated C2
n values may be due, in part, to increased

TKE on this evening. The elevated nocturnal C2
n may also be due to the height of

the scintillometer path. Typically, scintillometer measurements are taken within the

first few meters above the surface. Turbulence within this surface layer is strongly

influenced by surface interactions, and behavior which is typical close to the surface

will not necessarily be observed at the height of the scintillometer paths used here,

60 to 70m above the surface.
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Figure 3. Scintillometer measured C2
n vs. time from the Dayton scintillometer path.

Dark regions indicate nighttime with transitions at sunrise and sunset. All times are

local, EDT.

1.4 Current Methods for Determining C2
n

Five sources of real-time turbulence data are investigated here: scintillometer,

NWP, NEXRAD, Image Differential Motion, and cell phone signals. Because it is

a well-established method, scintillometry will be used as the standard to compare

against, when available. Currently, there is significant interest in using NWP to esti-

mate C2
n, [2,46–48] and results using the standard NWP approach will be presented.

C2
n estimated via standard techniques [16] which use NEXRAD clear-air reflectivity

are also presented. Recent research has also shown that C2
n may be determined based

on image analysis [4]. Using images taken over a long path (several kilometers),

differential motion within the image can be used to determine C2
n.

These methods will be compared with C2
n estimated using the new approaches

presented in this work. The new methods include modifications to the standard
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NWP approach, and a new method which estimates C2
n from cell phone signal strength

variation. It will also be shown that NWP can be fused with either NEXRAD or cell

phone C2
n data to provide improved performance. As an example NWP and NEXRAD

data are fused and used as a validation tool for the new Image Differential Motion

technique [4]. This section will present a brief summary of the standard methods

compared in this work. Later sections will develop methods which fuse NEXRAD

and NWP to provide improved measurement capabilities, and show how some of

these techniques are suitable for extension to improve cell phone scintillometry.

Scintillometers use a calibrated laser or LED source with a specialized receiver

known to measure C2
n, [28, 29, 41, 44, 62]. Turbulence-induced refractive index varia-

tions distort the propagating wavefront. Due to mutual interference and path-bending

induced by spatial variation in n over the propagation path, the intensity measured

at the receiving aperture varies, or scintillates, in time and space. By tracking the

scintillation, and making some assumptions about the propagation path, turbulence

parameters can be estimated [32,68]. By measuring scintillation over a period of time,

and in some cases over the pupil-plane area, an estimate of C2
n over the propagation

path can be created. Scintillometers have been developed which operate in bands

which range from the microwave to visible-light regime.

Large aperture scintillometers are used for both the Dayton and Albuquerque lo-

cations. The Dayton device is a Scintecr BLS2000, which uses two arrays of 880nm

LEDs which are modulated at two different frequencies. The receiver is a telescope

which collimates received radiation onto a high-sensitivity photo-diode. By modulat-

ing the two arrays at different rates, the receiver can differentiate scintillation from

both paths. The two transmitting apertures are circular LED arrays, spaced 30cm

apart. This creates a triangular measurement geometry (Figure 4). This type of

scintillometer weights its measurement of C2
n toward the center of the path with zero
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weighting at the path ends. Because there are two transmitters and one receiver, the

paths forms a triangle. Because of the triangular geometry, the 30cm separation at

the base of the triangle, and the measurements being weighted toward the center,

the scintillometer can measures C2
n for two regions whose centroids are separated by

15cm. Using C2
n from both paths allows for detection of transverse wind velocity and

reduction of saturation effects [62]. The scintillometer also has a weighting which

emphasizes the portion of the turbulence size spectrum from 0.1 to 10cm with the

peak weighting being at around 3cm [62]. The scintillometer used at the Albuquerque

location is similar to that used at the Dayton site.
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Figure 4. Illustration of the BLS2000 measurement geometry for the Dayton path (not

to scale). The scintillometer consists of two transmitters, Tx1 and Tx2, spaced 0.3m

apart with the receiver, Rx 7km away. Each path from transmitter to receiver measures

integrated C2
n over the path, with a much stronger weighting of C2

n toward the center

of the path. Ellipses C1 and C2 illustrate that each path gives the structure function

constant for similar sized regions of the atmosphere, with some lateral separations.

In addition to scintillometry, NWP is used to estimate C2
n. Development of tech-

niques for determining structure function constants from NWP, which cannot resolve

the scale of turbulent structure, is possible for fields whose perturbations are pri-

marily due to PBL turbulence. This is made possible by the energy cascade theory,

first proposed by Kolmogorov. The theory is based on the idea that eddies in fully

developed turbulence have a steady state balance between generation and dissipa-

tion. Considering the amount of energy present in eddies as a function of eddy size,
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there is a spectrum of eddy sizes known as the inertial subrange wherein the primary

generation and dissipation mechanism is the cascade (breaking apart) of larger eddies

into smaller eddies. As the eddies become smaller, the rate at which their energy is

dispersed due to the cascade becomes smaller. At some size, the rate of dissipation

into smaller eddies becomes less than the rate at which the energy is dispersed into

heat, ε. The size of eddies where heat dissipation overcomes cascade dissipation is

the so called inner scale of the inertial subrange, l0. The largest eddies, receive their

energy from various eddy generation mechanisms which are ‘outside’ the largest scale

of the turbulence, L0. While the scale of l0 is generally agreed upon to be on the

order of a few centimeters in the typical PBL [28], estimates of the outer scale vary

over many orders of magnitude [78]. The true value of L0 has practical implications

for the applicability of Kolmogorov’s energy cascade theory, but if the energy dissi-

pation rate, ε, can be determined then the energy spectrum of the turbulence can be

estimated, and has been shown to agree well with measurement [68].

In cases where Kolmogorov’s energy cascade theory is applicable, Tatarskii devel-

oped a relationship between the vertical gradient of a passive additive and its structure

function constant,

C2
ζ = a2ε−

1/3Kζ

(
d 〈ζ〉
dz

)2

. (9)

In (9) a is a universal constant, ε is the rate of dissipation of TKE into heat, Kζ is

the rate of diffusion of the passive additive ζ, and d 〈ζ〉/dz is the vertical gradient

of the mean state of the passive additive (the gradient without turbulence induced

perturbations). For a quantity to be passive it must not affect the turbulent flow

when advected. To be additive the quantity cannot change value due to advection

by the turbulent eddy. For example, temperature is not additive because if a parcel

of air is advected vertically, the pressure will change to maintain hydrostatic balance

resulting in an adiabatic change of temperature. However, equivalent potential tem-
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perature θ is additive because its value does not change due to vertical advection.

Equivalent potential temperature (hereafter referred to as “potential temperature”) is

the temperature that a parcel of moist air would have if it were brought to a reference

pressure using a reversible moist adiabatic process. Tatarskii’s equation is often used

to estimate structure function constants for turbulence research using vertical gradi-

ents of passive additives determined from NWP (or other sources of vertically sampled

weather data live rocketsonde, radiosonde, and IR sounders). [3, 16, 21, 34, 35, 58, 78].

Once found, the gradients of potential temperature and vapor pressure can be con-

verted to index gradients used to determine C2
n.

Scattering techniques may also be used to measure C2
n. Purpose built lidar and

radar systems have been used to remotely measure turbulence [18,40,54,58] at mod-

erate (up to 15km) ranges. Even when comparing measurements from similar in-

struments, it is common for there to be significant disagreement about C2
n and other

turbulence parameters [2,18,28,44,58,74]. Variations in T , ev, and P lead to changes

in the index of refraction, n, of air. While these changes in n are slight, there effects

are measurable using a variety of techniques. Radar and lidar may be used to detect

Bragg scattering off turbulence induced index variations [9, 10, 16, 18, 20, 26, 58, 59].

Under the assumption that all back-scattered energy is from clear-air turbulence, then

the value of C2
n measured by radar can be found using [16,19,21]

C2
n = 2.63π5λ−11/3 |Kw|

10dBZ/10

10006
, (10)

where λ is the wavelength, Kw is the complex index of refraction for water, and dBZ is

the NEXRAD reflectivity factor. Often, wind-profiling radars operate at wavelengths

between 1/3 and frac2/3m, where reflections from hydrometers are relatively weak.

Later in this work, results will be presented which argue for the inclusion of non-

hydrostatic pressure gradients in estimation of C2
n values. If the turbulent eddies do
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have a velocity structure similar to the proposed Lamb-Oseen irrotational vortex [61],

then (10) may no longer be valid. The common assumption is that the “size” of the

eddy is the same when considering (1) the energy present due to its circulation, and

(2) the eddy’s scattering properties. This assumption is an oversimplification. While

there is no analytic solution for 3-D vortex structures, numerical 3-D vortex solutions

have a radial velocity structure which converges to a similar form under conditions

considered for PBL turbulence [47,61]. More detail of the resulting refractive structure

will be given in Section 2.4, where the non-hydrostatic pressure term is introduced.

What is found is that the size of the eddy as a scattering body (property 2) is smaller

than its size as a vortex structure (property 1). This difference in size leads to (10)

overestimating C2
n. This comes about because Doviak uses Kolmogorov’s five-thirds

law,

E(k) = Cε
2
3k−

5
3 (11)

to obtain the relationship between scattering and eddy size. Doviak does show that

clear-air back-scatter is dominated by eddies with diameter in the Bragg-scattering

regime, D ≈ λ/2. However, if the effective scattering body size, Ds, is less than the

actual vortex size, Dv, then C2
n will be over-estimated by a factor of (Ds/Dv)

5/3 .

While they provide good resolution and accuracy, standard turbulence-measurement

instruments such as scintillometers, LIDARs, rocketsondes, radiosondes, and wind-

profiling radars are severely limited in the temporal and spatial extent of the at-

mosphere they can sample compared to the immense volume coverage provided by

operational NEXRAD coverage, cell phone networks and NWP forecast models. The

cost advantage of using freely available data over instrumentation is obvious. While

the radar itself is an active device, their data are publicly available for download. Cell

phone towers broadcast continuously, and measurement only requires receiving their

broadcasts. So using weather radar, cell phone signals, and forecasts to measure C2
n
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has the added benefit of essentially being a ‘passive’ method. The following sections

will outline how NEXRAD and NWP or cell phone and NWP might be combined

to provide a more accurate and high-resolution C2
n estimate than either system can

provide by itself.

1.5 A Better Way to Measure C2
n

In the previous section, four common methods for determining C2
n were presented,

but all of these methods fail to provide a reasonable solution for real-time, large-

volume C2
n measurements. Distributed weather probes have the obvious problem of

deployment. Rocketsondes and radiosondes only measure a small column of turbu-

lence at a time, and are expensive to operate continuously. Wind-profiling radars

provide a relatively large volume measurement, but are also expensive to install and

maintain. Scintillometers are relatively inexpensive and easy to set up, but measure

only a small volume of the atmosphere. Because they require alignment of the trans-

mitter and receiver, scintillometers are generally limited to fixed locations. NWP is

limited by its resolution, which is usually on the orders of kilometers (horizontally)

and hours while turbulence scales require centimeters and seconds. While models

can be run at these scales, their validity degrades in a matter of a few seconds af-

ter initialization, and they still require a very high-resolution boundary condition for

initialization.

Benefits of using NEXRAD as a turbulence measurement instrument have been

documented [9, 10] and can be summarized as providing a persistent, passive, wide-

area, historically archived measurement method. This makes NEXRAD a convenient

and useful source for large-volume high-resolution turbulence information. A partic-

ular benefit of the NEXRAD over more conventional instrumentation is its ability to

measure turbulence in the upper PBL. This can be leveraged for PBL structure stud-
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ies as shown in Section 4.4 or for comparison results to be used for system verification

and validation as shown in Section 5.3.

Cell phone signals (and other RF emitters of opportunity) provide potential aug-

mentation and extension of the radar capabilities. While NEXRAD measurement

range extends several hundred kilometers, the range at which they detect turbulence

appears to be limited to about 50km. As a result, the area where weather radars

(NEXRADs included) can measure turbulence is large, but is far from complete (a

map of NEXRAD locations is presented in Figure 15). Cell phone towers can provide

coverage in areas that are beyond the reach of the NEXRAD network. Because the

cell phone base-station signals are always available, they provide a more constant

measurement source. NEXRAD measurements take between 5 to 10 minutes to com-

plete and a given location is only measured once in this period. Therefore, NEXRAD

does not provide the constant coverage available from cell phone base-station signals.

Cell phones provide a point-to-point measurement like scintillometers, but do not

require alignment, and many locations have several transmitters within view at any

given time. Cell phone measurements update frequently, often on the order of sec-

onds. Also, the process by which cell phones signals are affected by turbulence is not

identical to radar, so comparing the two can provide more insight into the physical

processes of the PBL turbulence.

In comparison to other methods, RF techniques do suffer from considerable noise

and measurement uncertainty, which is described in detail in Chapter IV. NEXRAD

data are also limited in range and completeness. Their limitations are especially

severe during winter months, or when precipitation is present. Despite these draw-

backs. RF techniques provide promising capabilities. They are capable of providing

turbulence measurements in a much greater volume than scintillometer, rocketsonde,

radiosonde, or distributed probe methods. Compared to NWP, NEXRAD radar pro-
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vide over an order of magnitude improvement in temporal and spatial resolution.

They are essentially passive methods, as the radiation sources are already active.

The radar volumetric scan is unique in its ability to provide a three-dimensional mea-

sure of turbulent activity. The fact that historical radar data are available allow for

turbulence data to be created for comparison to previous work.

In addition to the standard methods for determining C2
n from NWP or NEXRAD

alone, this work will present several new techniques which determine C2
n based on

fusing and extending existing NEXRAD and NWP techniques. These new methods

make use of the Ciddor model [13], which is not typically found in PBL C2
n literature.

Ciddor’s equation and Edlén’s equation for visible light to IR refractivity, are the

standard methods for relating index of refraction to atmospheric pressure, temper-

ature, and vapor pressure [13, 65]. Ciddor’s equation is argued to be more accurate

over a larger range of environmental conditions and wavelengths so is used here [65].

While there are differences, the difference between n values from the two methods is

negligible when compared to the large uncertainty inherent in NWP, NEXRAD, and

cell-phone input data.

Despite the fact these equations are the modern standard for visible light to IR

refractive index calculation, a much less accurate equation which is intended for use

in RF is often used in current PBL turbulence literature. This work will compare the

use of Ciddor’s equation to the RF equation which is currently in use, and show that

when considering the impact of water vapor and pressure, Ciddor’s equation does a

much better job of predicting C2
n. The Edlén equation was not used, but is expected

to give nearly identical results to the Ciddor equation. In addition, a method for

determining C2
n from scintillation in terrestrial emitters of opportunity (cell phone

signals) is presented. The baselining technique developed for NEXRAD is compared

with a new image-based C2
n technique, and is also suitable for correcting cell phone
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based scintillation.

The new methods presented here are partially based on removal of the common

simplifying assumption that vapor pressure and pressure gradients do not play a role

in determining C2
n for IR and visible systems. This modification is suggested by com-

parison of the magnitude of pressure, temperature, and vapor pressure contributions

to C2
n. It will be shown that pressure contributions are a natural consequence of

turbulent flow and are significant under some atmospheric circumstances, but can be

safely ignored at other times. Furthermore inclusion of pressure and vapor pressure

perturbations provides a physical explanation as to why C2
n values are consistently

several orders of magnitude higher than expected during dawn and dusk quiescent

periods (when they should not be ignored). The new picture of pressure’s role in

turbulence makes use of the Lamb-Oseen vortex model [61].
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II. Methodology and Theorotical Development

In this work, several novel methods for remotely determining C2
n were investigated

and compared with standard approaches. A large portion of this document focuses

on using NWP and radar to estimate C2
n and comparing it to scintillometer measure-

ments. The results show how well C2
n can be estimated, and suggest under which

conditions the methods work well. The radar and NWP C2
n technique is then used to

generate comparison data for the cell phone and image differential motion techniques.

This section will present the theory and processing techniques for estimation of C2
n

form radar and NWP, and from cell phone scintillation. The next chapter will present

the practical concerns involved when implementing these methods.

2.1 Performance Metrics

When testing new approaches to generating C2
n estimates, the need to determine

how well the approach woks quickly becomes salient. In the initial research stages,

the methods are crude and quick, plot the data and see if it looks as expected. As

the methods are developed, it becomes necessary to develop a more objective method

to determine how well a test method can estimate C2
n. Scintillometer data are used

as truth data for comparison of the NEXRAD-NWP methods. These NEXRAD-

NWP methods are then used to evaluate the image based, and cell-phone methods.

Previous work has shown that cell phone C2
n correlates well with radar C2

n. So the

baselining technique may be used to baseline the cell phone C2
n to match optical

or radar systems, as needed. In turbulence studies one is often doing well if two

methods for determining C2
n show about the same order of magnitude and show

similar diurnal variation. Compared to other disciplines, this criteria seems to show

a paltry agreement between data. It would be hard to imagine a carpenter framing
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a house with measurements that are correct to within an order of magnitude, and

grouped so that the large studs are mostly with the large studs and small studs are

mostly with other small studs. The measure of successful agreement in C2
n has its bar

set so low for reasons which are closely tied with the need for structure functions to

describe turbulence.

The BLS2000 scintillometer, used at the Dayton site has two transmitters set

close together and one receiver (Figure 4). Despite having a separation of only 15cm

in the middle of the path, measurements from each transmitter have a covariance

which is only about 1/8 the variance seen in either path [62]. It is apparent that

the value of C2
n, while describing the structure function over a large volume can

vary quickly with small changes in the volume centroid. Assuming the outer scale

of turbulence is on the order of L0 = 50m (a commonly used value in the PBL [78])

it is surprising to find that a the structure function constant, which describes the

magnitude of variation for structures up to L0 and centered at one location, is only

weakly correlated to a structure function centered only 15cm away! Couple this with

Taylor’s frozen flow hypothesis [69] and one can see that even at low mean wind

speeds, say 〈v〉 = 0.5m · s−1, that temporal correlation of measurements quickly

becomes weak. It is this weak temporal correlation over short distances in space and

time that leads to the need for a relaxed criteria for C2
n estimation.

Before making comparisons between instruments, it is necessary to convert mea-

surements to a common sampling rate. Either by low-pass filtering data to a lower

sample rate, or interpolating to a faster sample rate. Care must be taken when con-

sidering the effect of low-pass filtering C2
n data. Unlike stationary processes which

tend toward a fixed value when averaged, turbulent processes like C2
n(~r, t) has a mean

value which can vary significantly from centroid to centroid under processes like the

sliding mean. This is a restatement of what is presented in the paragraph above.
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For this reason, even when low-pass filtered, measurements from two instruments are

not expected to approach each other as they would in a scenario where both instru-

ments sample of the same underlying process with added independent and identically

distributed noise.

The instruments used here include scintillometers, cameras, cell phone tower and

receiver pars, NEXRADs, and NWP models. These instruments each have their own

particular geometry, resolution, and noise considerations. In addition, several choices

in how to process these measurements into a C2
n estimate are presented. Because

estimates from each method will represent locations and times which are only ap-

proximately the same as those being compared to, it is expected that agreement in

C2
n will vary. The goal then becomes to define a quantitative measure which can

describe how similar measurements are, and how significant that similarity is.

The performance of C2
n estimates are quantified based on the difference of the

common log of the C2
n between methods. Two measures of performance are used.

The first is the Root Mean Squared Error (RMSE) between the test method, and

standard method as defined by

RMSE =

√√√√ 1

N

N∑
i=1

(X̂i −Xi)2. (12)

Here N is the number of samples being considered, X̂i is the ith C2
n value from the test

method, and Xi is the ith C2
n value from the standard method. When more than one

test method is being compared to a standard, the test methods can also be ranked

by the number of points where the particular method provides the smallest error,∣∣∣X̂i −Xi

∣∣∣. The count is normalized by dividing by the number of samples involved
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providing the Normalized Best Estimate Count (NBEC).

NBECj =
100

N
×

N∑
i=1

[∣∣∣X̂i,j −Xi

∣∣∣ = min
(∣∣∣X̂i,1 −Xi

∣∣∣ , ∣∣∣X̂i,2 −Xi

∣∣∣ , . . . , ∣∣∣X̂i,M −Xi

∣∣∣)] . (13)

Here M different test methods are being compared at N different points. Xi,j is the

ith estimate from the jth method. The brackets in the sum are Iverson brackets which

are defined as

[P ] =


1, P is True

0, P is False

. (14)

The fraction 100/N normalizes the result to a percent of the total data points so that

0 ≤ NBECj ≤ 100. This allows for the methods to be ranked from that which offers

the most agreement to that which offers the least.

Because the methods used here are algebraic manipulations of data, the uncer-

tainty in the results depends on how errors in the original data are propagated through

the algorithm, and floating point errors. As none of the data sources provide error or

uncertainty information meaningful error bars could not be applied to the RMSE. It

is possible for some of the operations to become badly conditioned, and unrealistically

large or small values result. These data are omitted from the comparisons. Even if

initial error data were available, the non-stationary nature of C2
n precludes the ability

to determine variance in the traditional sense because the mean itself is a random

function of space and time.

RMSE and NBEC are both computed in common-log space. Comparisons were

also made in linear space. The over-all ranking of the methods was similar in both

spaces, even though the results of individual comparisons may change depending on

the space used. The NBEC test has some sensitivity to the choice of computation
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space. It is certainly possible for index, j, of the smallest deviation in (13) to change

after transformation from the log-space used here back to linear space. RMSE is also

affected by the choice of space. As the difference in estimates can often be more than

an order of magnitude, periods of over-estimation, even when short, carry significant

weight in the linear space-RMSE. Use of log-space estimates is believe to be more

practically useful, as most turbulence characterization is presented using log-space.

For the NEXRAD-NWP to scintillometer comparisons, data were taken from each

month of the year at both the Dayton and Albuquerque sites. The amount of usable

data from each month is limited by the availability and completeness, and quality of

both the scintillometer data and radar data. Periods of precipitation, and prolonged

periods (greater than 30min) when the radar or scintillometer data are missing were

identified and removed from the RMSE calculations. Before comparison, scintillome-

ter data are low-pass filtered to match the radar measurement times. Therefore, each

comparison point corresponds to a radar measurement, which occur on intervals of 5

to 10min depending on the radar mode. For the Albuquerque, New Mexico NEXRAD

station (KABX), the average C2
n points per month is 679, with a minimum of 159

points in September, and a maximum of 1027 points in January. The Wilmington,

Ohio NEXRAD station (KILN) data provided an average of 1161 points per month,

with a minimum of 111 points in February and a maximum of 4747 from August.

Results from the individual months are combined using a weighted average to get the

RMSE over the year for each site according to,

〈RMSE〉 =
12∑
i=1

wiRMSEi. (15)

Here 〈RMSE〉 is the RMSE value in Table 2, and RMSEi is the RMSE of the ith
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month. The monthly weights, wi, are given by,

wi =
ni∑12
i=1 ni

, (16)

ni is the number of comparison points from the ith month. In addition to the weighted

mean, a 12-month mean is also reported as

〈RMSE〉 =
1

12

12∑
i=1

RMSEi. (17)

Comparing the actual RMSE results to the resampled rates provides a metric for the

best possible performance an estimation method could be expected to provide. There

are several different combinations of the techniques listed above which can be used

to estimate C2
n. The following list includes the name and a short description of the

techniques referenced and presented here.

1. RF N(T ) Using Tatarskii’s method (25), with dN/dT based on RF N in, (24),

dθ/dz obtained from NWP, and ignoring other terms. This is a common method

for estimating C2
n.

2. Ciddor N(T ) Using Tatarskii’s method (25), with dN/dT based on Ciddor’s

N in, (57), dθ/dz obtained from NWP, and ignoring other terms.

3. RF N(T, ev) Using Tatarskii’s method (25), with dN/dT and dN/de′v based

on the RF N in, (24), dθ/dz, and devdz obtained from NWP, and ignoring the

dP/dz term. This method is sometimes seen when estimating C2
n, especially in

the RF regime.

4. Ciddor N(T, ev) Using Tatarskii’s method (25), with dN/dT and dN/de′v based

on Ciddor’s N in, (57), dθ/dz, and dev/dz obtained from NWP, and ignoring

the dP/dz term.
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5. RF N(T, ev, P ) Using Tatarskii’s method (25), with dN/dT , dN/de′v, and

dN/dP ′ based on the RF N in, (24), dθ/dz, and dev/dz obtained from NWP,

and dP/dz determined from radar Doppler spectrum width, as described in

Section 2.4.

6. Ciddor N(T, ev, P ) Using Tatarskii’s method (25), with dN/dT , dN/de′v, and

dN/dP ′ based on Ciddor’s N in, (57), dθ/dz, and dev/dz obtained from NWP,

and dP/dz determined from radar Doppler spectrum width, as described in

Section 2.4.

7. RF N(T, ev) + WC(T, ev) Here the RF N(T, ev) estimate is corrected using the

wavelength correction (46) using RF N for the numerator partial derivatives,

and Ciddor’s N for the denominator, but with the pressure terms neglected.

8. RF N(T, ev, P ) + WC(T, ev, P ) Here the RF N(T, ev, P ) estimate is corrected

using the wavelength correction (46) using RF N for the numerator partial

derivatives, and Ciddor’s N for the denominator, and using all 3 terms.

There are also several baselined corrections. There refer to the technique described

in Section 2.6 where a NWP based C2
n estimate is used to correct the radar C2

n by

removing some of the effects of clutter. These are all named based on the NWP used.

So a baselined correction using RF N(T, ev, P ) + WC(T, ev, P ) is named Baselined

RF N(T, ev, P ) + WC(T, ev, P ). Image Differential Motion (IDM) C2
n have a similar

temporal relationship as the radar and scintillometer data. The IDM produces minute

by minute C2
n. The RMSE for the single day of IDM data is not calculated here,

however.
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2.2 Measurement Methods

Comparison measurements were collected from the scintillometer and the IDM

technique. This section describes the site locations and measurement conditions for

these instruments. Scintillometer measurements of C2
n were provided by two different

research groups at two sites. One site is in Dayton, Ohio and the other is near

Albuquerque, New Mexico. The Dayton site has been collecting C2
n data from a 7km

path for which has been described previously in literature, [74] and is depicted along

with a terrain cross-section in Figure 5. The Dayton site uses an 880nm Scintec

BLS2000 scintillometer which has been collecting data, when possible, since 2011.

The Albuquerque site is a little under half the length of the Dayton path. And passes

somewhat closer to the ground with a maximum height near the center of the path

which is about 62m. C2
n data from 2013 and 2014 were provided for the Albuquerque

site, which also uses an 880nm scintillometer.

Figure 5. Straight-line path of Dayton scintillometer beam over terrain. The University

of Dayton is on the right (East) end of the path and the Dayton VA Medical Center is

on the left (West) end. The Great Miami River passes under the path and is about a

km from the East end.

The Dayton scintillometer site passes over a river valley and includes both urban,

and suburban terrain features. The wide variety of natural and man-made terrain
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features creates a complex heating environment in this area. Located at 39.7oN , the

local climate is temperate with large seasonal variability in temperature, precipitation,

and humidity. An altitude of around 300m results in pressures around 35mb below

Mean Sea Level (MSL) pressure. The scintillometer path (Figure 5) is oriented in a

predominantly East-West direction, with the higher portion of the path on the West.

The center of the path is nearly 70m Above Ground Level (AGL). As the land slopes

down from West to East for the first part of the path, it is expected that the ground

will generally receive more direct sunlight at dawn than at dusk. The scintillometer

transmitter is inside an enclosure on the roof of the Dayton United States Department

of Veterans Affairs (VA) Medical Center. The receiver is located in a University of

Dayton (UD) laboratory. It was discovered that the windows of the UD lab blocked

most of the 880nm light. So for the scintillometer to operate, the window had to be

removed. While this would create flows around the window, the path weighting of the

scintillometer is nearly zero at the ends so the impact on measurement is negligible.

The Albuquerque site is 3.2km long, and located in the Sandia Mountain region.

The terrain is high desert with the surface predominantly earth and low shrub. The

latitude is similar to the Dayton site, but the elevation is about 1800m. This leads to

significantly lower pressure of about 200mb lower than MSL pressure. Albuquerque

is unlike Dayton in that its humidity is much lower year-round, and Albuquerque’s

humidity cycles so that it is greatest in the winter, and the least in the summer.

Dayton’s humidity is typically greatest in the summer and least in the early spring

(Figure 6). Temperature variations show a similar pattern to those in Dayton, but

shifted so that the average highs and lows are 10oF greater throughout the year. Like

the Dayton path, the Albuquerque path is elevated partially by passing over a natural

valley between two hillsides. However, the center of the path is slightly lower than

the Dayton path.
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Figure 6. Climatological average daily high (blue) and low (brown) relative humidity

for Albuquerque, New Mexico (Top) and Dayton, Ohio (Bottom). Shaded regions

indicate 25th to 75th percentile (inner band) and 10th to 90th percentile (outer band).

Plots were generated by, and used by permission from WeatherSpark.com [11].

The IDM path is also located in the Greater Miami Valley (Figure 7). It passes

from Wright Patterson Air Force Base (WPAFB) to Good Samaritan Hospital. This
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path is 12.8km in length, and passes over a wide flat valley. Data are only available

from 23 July 2014, a day which was clear in the morning and late afternoon, but

was clouded over during midday. Images were collected using a Cannonr 40D digital

camera mounted to a tripod with a heat shield to minimize motion due to thermal

expansion of the tripod legs. The camera recorded time-lapse images of the hospital

over the course of the day. A correlation technique is used to remove vertical variation

of the hospital, and then to track the relative motion between portions of the image.

By comparing how separate portions of the image move with respect to each other,

a path weighted C2
n can be extracted [4]. The weighting functions vary depending on

which portions of the image are used.
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Figure 7. Image Differential Motion path with surface elevation profile. The hospital

is on the left and AFIT on the right in the elevation plot. Satellite image c©Google

2015. Figure taken from [4].

2.3 Tatarskii’s Method for Determining C2
n

One of the most common methods for determining the index of refraction structure

function constant, C2
n is due to Tatarskii [67, 68]. The method often finds C2

n as a

function of the temperature structure function constant, C2
T , but may also include

the vapor pressure structure function C2
ev and the cross-temperature-vapor-pressure

constant C2
t,ev . Typically, the C2

ev and C2
t,ev structure function constants are used

in the microwave regime, and ignored for visible and IR instruments. The results
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section shows that inclusion of these terms degrades RMSE between C2
n estimates

from Tatarskii’s original method and scintillometer C2
n. Here, this degradation in

RMSE is attributed to the fact that an RF equation for n(T, P, ev) was used by

Tatarskii instead of an visible-to-IR n(T, P, ev). Most modern methods for going

back and forth between these structure function constants, and much of turbulence

theory is based on his work, and continue to used the RF n(T, P, ev) and assume that

C2
n depends solely on C2

T in the visible to IR regime [1, 2, 12, 16, 18, 32, 34, 78]. This

assumption will be shown to be invalid under some circumstances in later sections.

Regardless of the form of n(T, P, ev) which is used, Tatarskii’s development is still

valid. Tatarskii proposed to consider the structure function of index of refraction from

the perspective of propagating radiation within a regime appropriate for Klomogorov

statistics to apply. If the field is locally homogenous and isotropic in the statistical

sense, then the index of refraction structure function has the form, [67]

Dn(r) =
〈
[n(~r + ~x1)− n( ~x1)]2

〉
. (18)

In previous work, Obukov showed that for passive additives in a turbulent flow,

the structure function will have the form [52]

Dξ(r) =


C2
ξ r

2/3 l0 � r � L0

C2
ξ l

2/3
0

(
r
l0

)2

r � l0.

(19)

Where ξ is some passive additive, l0 is the inner scale of the turbulence, and L0 is the

outer scale. Before Obukov, Kolmogorov had shown that the structure function of

velocity perturbations within the field also had the same form. Tatarskii went on to

show that for PBL turbulence, the structure function constant of a passive additive

can be found from the vertical gradient of the mean of the passive additive. A form
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of this equation from [16] is

C2
ξ = a2ε−

1/3Kξ

(
d 〈ξ〉
dz

)2

, (20)

where Kξ is the coefficient of diffusion of the passive additive ξ, ε is the rate of

dissipation of turbulent energy into heat, and a is a universal constant on the order

of unity.

Certain measurable qualities of the atmosphere can be considered passive additives

with respect to turbulence. Being passive means that variations in these parameters

do not affect the turbulent flow. By being additive, the quantity does not change on

advection. Velocity and pressure perturbations certainly are not passive, but temper-

ature, index of refraction, and vapor pressure are to a good approximation passive.

None of these parameters are strictly additive. The reason that parameters like tem-

perature, vapor pressure, and index of refraction are not additive is that hydrostatic

balance in the atmosphere creates vertical variation in pressure. Upon advection of

an air parcel by turbulence, any change in altitude will change its temperature via an

adiabatic equalization to surrounding pressure. Likewise, vapor pressure will change

via equalization. Because index of refraction depends on temperature, vapor pres-

sure and pressure, it too must change depending on its vertical displacement. These

difficulties are overcome by a change of parameters. Instead of a field of temperature

which changes with position and time, T (~x, t) perturbations of potential tempera-

ture θ = T (P0/P )0.286 will be considered. In a similar manner, the potential vapor

pressure will be used. Following convention, it will be assumed that any reference in

this work to C2
n is a reference to the potential index of refraction structure function

constant. It is common to use (20) to estimate of C2
n in the PBL,

C2
n = a2ε−

1/3Kn

(
d 〈n〉
dz

)2

. (21)
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Similarly, the temperature structure function can be found using (20). In this and

other contemporary work, the variables ε−
1/3Kξ are transformed so that (20) has the

form [2]

C2
T = a2

(
KH

KM

)
L

4
3
0

(
∂θ

∂z

)2

, (22)

Here a modification has been make to turbulence parameters where ε−
1/3KT has been

replaced by L0 and the ratio of eddy diffusivity of heat KH and momentum KM .

Methods for finding KH/KM and L0 from NWP are detailed in [2] and a2 = 2.8.

Since C2
T can be calculated directly from NWP, it is most common to use Tatarskii’s

method to find C2
n via

C2
n =

(
∂n

∂T

)2

C2
T . (23)

Where ∂n/∂T is the partial derivative of index with respect to temperature. The

commonly used parametrization of n is based on refractivity N = (n − 1) × 106 in

the RF regime,

RF N =
79

T

(
P +

4800ev
T

)
. (24)

Here T is temperature in K, P is pressure in mb, and ev is water vapor pressure in mb.

While Tatarskii notes that this equation is intended for millimeter waves and longer,

it is used in practice for all regimes, from RF to visible light [2, 12,16,32,67,68,77].

This method is used here as presented by Alliss and Felton [2] with a difference

in that the value of L0 is set to a fixed value of 100m instead of estimating it. A

static value was chosen because the approximation of L0 used by Alliss and Felton

relies on thermally stable conditions, but a large portion of data herein was taken

under thermally unstable conditions. There is much disagreement in literature as to

the typical size of L0, with estimates ranging from under 5m to many hundreds of

meters. [78] The 100m, value was chosen as it works well throughout the year at both

locations and will be discussed later in this section.
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In this work, this method is extended in two ways. The first is that the assumption

that index gradients depend only on potential temperature gradients is removed.

Instead the refractive index gradients are expanded in terms of temperature, vapor

pressure, and pressure,

C2
n = a2

(
KH

KM

)
L

4
3
0

(
∂n

∂T

dθ

dz
+
∂n

∂P

dP

dz
+
∂n

∂ev

dev
dz

)2

. (25)

The second modification is that refractivity partial derivatives are calculated two

ways. The refractivity equation (24) will still be used for RF systems (NEXRAD and

cell phones) In addition to this empirical equation, Ciddor’s equation for refractivity

is used in the IR to Visible spectrum. Ciddor’s equation is given in Section 2.5 and

for purposes of this work, can be compactly expressed as

N =
P

ZT
(A+ xwB) . (26)

Here Z is the compressibility of moist air; xw is the molar fraction of water vapor in

the air; and A and B are wavelength dependent constants. Implementation of both

equations, with inclusion of the various gradients is presented in section Section 2.5,

with full parameters and partial derivatives left to the appendix, Section 7.1.

Just as θ is used in place of T , rather than consider the pressure field, P ′(~x, t), and

vapor pressure field, e′v(~x, t), which both contain the effects of hydrostatic balance,

this work will refer to non-hydrostatic deviations of these two quantities. That is,

from here-on P (~x, t) = P ′(~x, t)− P0 + ρgz, and ev(~x, t) = e′v(~x, t)P0/(P0 − ρgz) with

P0 being the reference pressure of 1000mb, ρ being the density of air, g the acceleration

due to gravity, and z as the vertical coordinate.

Inclusion of pressure gradients deviates from other developments. The customary

treatment is to ignore index gradients induced by local pressure gradients because
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pressure equalizes nearly instantly upon advection. However, this ignores the pressure

gradients which must be present in order to produce curvature of the flow. Before

proceeding, it is important to address the impact of this inclusion of pressure on the

assumed form of the structure function. There is a difficulty in that the application

of Obukov’s two-thirds law (19) in that he derived the law based on the assumption

that it describes the local field of a passive additive. [52] As previously stated, to be

considered a passive additive a quantity must not significantly affect the turbulent

flow upon advection (passive), and its value must be conserved upon transport by

the flow (additive). Generally, it is accepted that n can take on the form of a passive

additive, if it is a expressed as a function of potential temperature, and specific

humidity (or mixing ratio, potential vapor pressure, or some other conserved quantity)

[12, 16, 32, 68]. As Obukov mentions, Tatarskii had already developed a statistically

based structure function for the velocity perturbation field, which itself is not a passive

additive, but also has a two-thirds scaling within the inertial subrange. Velocity

perturbations are necessarily tied to localized non-hydrostatic pressure gradients by

Newton’s second law. Without an accelerating force, the velocity flow would not

perturb. Because spatial variation in velocity must be proportional to spatial variation

in pressure, it is therefore reasonable to assume that within the inertial subrange,

pressure perturbations will also follow a two-thirds law.

An important consideration is whether this modification is necessary, based on the

expected magnitudes of dP/dz and ∂N/∂P . It turns out, that for the smallest eddies

(less than 50cm), typical pressure gradients are so slight as to be inconsequential.

For the larger eddies, the gradients predicted by the Kolmogorov energy cascade,

and a Lamb-Oseen vortex model are certainly of consequence. The degree which

the structure function Dn(r) depends on DP (r), limits the degree to which n can

considered a passive additive. The Lamb-Oseen model predicts that, near the core
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of larger eddies and at the wavelengths considered here, Dn(r) depends on DP (r) to

a similar degree as it depends on Dθ(r) and Dev(r). While n is no longer a passive

additive when its distribution is affected by pressure perturbations, the structure

functions of velocity and pressure perturbations and passive additives have the same

form. This presents a distinction, without a difference in application. Furthermore,

inclusion of this pressure term has improved agreement of predicted turbulence with

measurement.

It is straightforward to show that (25) is equivalent to that used by [2, 68] and

many others under the assumption that the pressure and vapor pressure terms are

negligible. Others provide expressions for maintaining the vapor pressure term as

well [12, 16], but the only research which the author is aware of where the pressure

term is maintained as it is here, is research based on this work [45]. In order to

compare the methods described here to what is commonly done, estimates are made

to using the temperature term alone as in [2], using temperature and vapor pressure

(which can be accomplished using NWP data alone), and using all three terms (which

requires radar data and the method in Section 2.4). It would be expected that better

agreement with the 880nm scintillometer would be found if one were to use Ciddor’s

equation as the basis of the partial derivatives of N in the following method. The

results will show that this is the case when two or three terms are used, but the RF

N equation performed better when only temperature is considered.

An issue arises with (25) which is not present in (22): the sign of the terms in

the sum. The partials of N(T, P, ev) and dP/dz always have the same sign, but the

θ and ev gradients may change sign. This may cause the T and ev terms in (25) to

sometimes reduce C2
n, and at other times increase it. However, based on the physical

model, one would expect that the magnitude of the total variation in n will be within
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a range which is bounded by the three terms in (25). That is,

∣∣∣∣∣∣∣∣ ∂n∂T dθdz
∣∣∣∣+

∣∣∣∣ ∂n∂T dθdz
∣∣∣∣+

∣∣∣∣ ∂n∂T dθdz
∣∣∣∣− max

(∣∣∣∣ ∂n∂T dθdz
∣∣∣∣ , ∣∣∣∣ ∂n∂T dθdz

∣∣∣∣ , ∣∣∣∣ ∂n∂T dθdz
∣∣∣∣)∣∣∣∣ ≤∣∣∣∣dndz

∣∣∣∣ ≤ ∣∣∣∣ ∂n∂T dθdz
∣∣∣∣+

∣∣∣∣ ∂n∂T dθdz
∣∣∣∣+

∣∣∣∣ ∂n∂T dθdz
∣∣∣∣ . (27)

For this reason, three adaptations of (25) are used here. The first is to use (25) as

written. The second gives the maximum expected variation by summing the absolute

value of each term in the expansion. That is,

C2
n = a2

(
KH

KM

)
L

4
3
0

(∣∣∣∣ ∂n∂T dθdz
∣∣∣∣+

∣∣∣∣ ∂n∂P dP

dz

∣∣∣∣+

∣∣∣∣ ∂n∂ev devdz
∣∣∣∣)2

. (28)

A third form is used as well based on the 2-norm distance in a space whose dimensions

are the three terms in the expansion,

C2
n = a2

(
KH

KM

)
L

4
3
0

[(
∂n

∂T

dθ

dz

)2

+

(
∂n

∂P

dP

dz

)2

+

(
∂n

∂ev

dev
dz

)2
]
. (29)

For a majority of the measurements, (29) gave the best agreement between estimated

and measured C2
n. Unless otherwise noted, this form will be use in the remainder of

this work.

As is customary, partials of refractivity, N = (n− 1)× 106, rather than refractive

index n will be used to calculate C2
n in the remainder of the work. The results of

using the more customary equation, (24), are used here, but (25),(28), and (29) are

also evaluated based on the Ciddor refractivity equation, (57), which is known to

more accurately predict refractivity in the visible and IR regime [13]. Comparisons

of using RF N from (24) and Ciddor’s N from the Ciddor equation, [13] are made.

It is shown in the results that Ciddor’s N provided much better agreement with

the 880nm scintillometer C2
n than the RF N when estimating C2

n with (25), (28),
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(29). Using Ciddor N typically reduces the RMSE by one-half or more. However,

the temperature only estimates based on the conventional equation, (24), provide

somewhat better agreement when applied to (22).

The quantity, a2 (KH/KM)L
4/3
0 , is found as described by Alliss and Felton [2]. As

mentioned, the value of L0 must be chosen, and this can have a significant impact

on the value of C2
n. In [2], the lower bounds of the Turbulent Kinetic Energy (TKE)

used in their Mellor-Yamada-Janjic closure scheme [48] was modified, to bring C2
n

down so that it better matched the data. The result of this lower bounds reduction

is to reduce the size of L0. As mentioned in Section 2.2, there is much disagreement

in the correct value of L0. In many cases, L0 is chosen so that measurement and

modeled data sets match well. [2, 34, 48, 78] Following conclusions of other authors,

it is expected that actual value of L0 depends on several factors involved in the

PBL TKE budget. In this data, increasing L0 causes the NWP based C2
n to more

closely match the NEXRAD based C2
n data, and decreasing L0 causes the NWP C2

n

to more closely match the scintillometer data. Adjustments in L0 could have been

made for each data set in order to improved agreement in any particular method, but

leaving L0 fixed is believed to give the fairest representation of the performance of

the methods used here. Using L0 = 100m appeared to give the best agreement for

the standard, temperature only RFN method in all of the data sets presented here.

This value is not only reasonable based on other observations of L0 at altitudes of

around 70m, but it also favors the standard method for estimating C2
n in the RMSE

and NBEC results. This way a persistent and significant improvement by one of the

newly proposed methods can be attributed to the merits of the method, and not

manipulation of L0.

The partial derivatives ∂N/∂T , ∂N/∂P ′, and ∂N/∂e′v as well as mean gradients

dθ/dz and dev/dz are found from NWP data using the methods described in Sec-
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tion 3.1. The dP/dz term is found using the method described in Section 2.4. While

direct calculation of C2
n from these gradients and partial derivatives has been found

to be the most straightforward method for estimating C2
n, two other approaches were

developed as well. The wavelength correction, and baselining method. These meth-

ods are also presented in this chapter, and their use may be preferable under certain

circumstances.

2.4 Non-Hydrostatic Pressure Gradients

When mean potential temperature and vapor pressure gradients head to zero,

C2
n values should likewise drop to zero according to (21). However, when observed

gradients do go to zero, C2
n values in measured data do not drop as much as expected

(For example, Figure 8). These small gradients create unrealistically small C2
n and

thus errors when using the estimation scheme in Section 2.3 and sometimes numerical

instability in the wavelength correction presented in Section 2.5. In order to address

the issue, we consider here a method for estimating the non-hydrostatic pressure

gradients generated by the circulation of turbulent eddies. Estimation of gradients

using this method has produced consistent, measurable improvement in the agreement

at both locations.
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Figure 8. Scintillometer C2
n (solid blue line) taken from the Dayton, Ohio path on 21

to 26 July, 2014. Also, C2
n derived from NWP-based potential temperature gradients

(dashed green line) for the same location and time period.

The existence of non-hydrostatic pressure gradients is predicted by the kinematics

of eddy circulation. As with all rotational motion, air parcels must be continuously

accelerated by some force, ~F = m~a. In the case of a vortex within a fluid, this

acceleration is created by a pressure gradient, which can be determined given a fluid

density’ ρ, tangential velocity, v, and radius of curvature, r. Here we assume that

eddys quickly evolve to an irrotational form, and use the Lamb-Oseen vortex as a

model. [61] In the Lamb−Oseen vortex,

v(r, t) =
Γ

2πr

[
1− exp

(
− r2

r2
c (t)

)]
. (30)

Here Γ is the vortex circulation, and rc(t) =
√

4νt is the size of the vortex core, and

ν is the viscosity.
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From this model, we can compute the radial pressure gradient function,

dP

dr
(r, t) = ρ

v2(r, t)

r
. (31)

In order to determine rc, the mean eddy lifetime, τe as a function of eddy size must

be determined. Tatarskii gives the rate of formation of the velocity fluctuations as

t−1 = vl/l with l as the dimension of the disturbance (vortex size), vl ≈ (εl)
1/3

as the characteristic velocity perturbation at length l, and ε as the rate of eddy

energy dissipation into heat. Under steady state conditions, the eddy formation and

dissipation rates must be the same. Since the mean lifetime of an eddy is the reciprocal

of its dissipation rate, we use

τe ≈ l/vl =

(
l2

ε

)1/3

. (32)

This assumption allows rc to be determined by eddy size, l. The circulation, Γ is then

found as a function of eddy size based on eddy energy. The eddy energy is found by

integrating over the eddy volume,

E(l) =

∫ l

0

∫ 2π

0

∫ 2l

0

ρ

2
v(r, l)2rdrdθdz. (33)

Here cylindrical coordinates are used, with the vortex cylinder length (in the z di-

mension) being equal to its diameter. Tatarskii gives the eddy energy as

E(l) = aε
2/3

(
2π

l

)−11/3

. (34)

Equating (33) and (34) with (32) substituted into v(r, τe) from (30) and integrating
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over θ and z gives

aε
2
3

(
2π

l

)− 11
3

=
ρlΓ2(l)

2π

∫ l

0

[
1− exp

(
− r2

4ν
3
√

ε
l2

)]2

r
dr. (35)

Solving for Γ(l) gives

Γ(l, ε) =
ε

1
3
√
a
(
l

2π

) 4
3√

ρ
∫ l

0

[
1−exp

(
− r2

4ν
3
√

ε
l2

)]2
r

dr

. (36)

Figure 9. Top Left: Lamb−Oseen tangential velocity vs radial distance. Top Right:

Pressure gradient vs radial distance. Bottom Right: Spatial filter vs radial distance as

applied during integration of eddy energy. Bottom Left: Energy spectrum vs radial

distance before and after applying the filter. All plots show values for a 4m eddy with

ε = 0.003m2s−3 and an atmosphere at standard temperature and pressure. Some of the

x-axis (radial distances) are truncated to less than the eddy’s full 4m in order to show

detail.
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From (36) it can be seen that Γ depends, to first order, on l
4/3 , and ε

1/3 . The

function Γ(l, ε) is approximated numerically. During integration, a window function

(Bottom left of Figure 9) is applied to force the eddy energy to zero near the ’edge’ of

the eddy. This filter represents fluid motions becoming uncorrelated with the eddy’s

vorticity at sufficient range from the eddy center and allows the numerical integral to

converge. While numerical approximation of Γ( ε) can be slow to compute, a fast and

reasonable estimate can be calculated quickly based on the observation that Γ(l, ε) is

nearly linear in log-space of typical PBL eddy sizes and ε values. To produce the fast

approximation, we define Γ0(l) = Γ(l, ε = 1.0). Taking the ratio Γ(l, ε)/Γo(l) using

(36) we find that

Γ(l, ε) ≈ Γ0(l)ε
1/3 . (37)

To approximate Γ0(l) we use a quadratic approximation

Γ0(l) = exp

[
−0.80063− 1.2822

2π

l
+ 0.0047108

(
2π

l

)2
]
. (38)

The quadratic approximation of Γ0(l) is correct to within 10−1.5 for eddies between

1cm and 100m (Figure 69).
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Figure 10. Pressure vs radial distance of 4m Lamb-Oseen vortex with ε = 0.003m2s−3

Pressure values are in millibars and signify deviations from the pressure at the center

of the vortex.

Looking at the top right plot of Figure 9, it can be seen that the peak pressure

gradient occurs at a radius of about 2.5 cm. This corresponds with a scattering body

with diameter Ds = 5cm, which meets the Bragg condition for peak back-scattering.

By integrating the dP/dr curve, the pressure structure itself can be found (Figure 10).

This structure shows that most pressure variation (and thus pressure-related index

variation) is confined to a region which is relatively narrow compared to the eddy

size. If index perturbations were dependent on pressure perturbations alone, then

the difference between the vortex size, Dv, and scattering body size, Ds, of this eddy
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would be on the order of

Ds

Dv

≈ 0.00625. (39)

However, the size of the scattering portion of the eddy also depends on local temper-

ature and water vapor perturbations. Using the same Lamb-Oseen velocity model,

it is possible to consider how a uniform gradient would evolve under advection by

a Lamb-Oseen vortex. Figure 11 shows the evolution of a gradient due to a Lamb-

Oseen vortex over one mean eddy lifetime. Here, the core radius, rc in (30), is left

constant rather than varying with time. It is apparent that the parameter is spa-

tially perturbed on scales much greater than that of the pressure (Figure 10), but

still somewhat less than that of the total eddy size. Taking the scattering region from

the Bottom-Right plot of Figure 11 to have a size of roughly Ds = 0.5m, the ratio of

scatter to vortex size is

Ds

Dv

= 0.0625. (40)

This is still a large ratio considering the impact on the scaling of the energy spec-

trum based on measurement. Following the five-thirds law, this indicates that the

spectrum scaling constant would be approximately 100 times too large! On the other

hand, this does not create a significant change in scaling between C2
n measured by

two different instruments as the ratio (40) does not change much for measurements

taken throughout the inertial subrange. This is especially true for comparisons of C2
n

measured by instruments like the large aperture scintillometers and NEXRAD radar,

where the dominant scale for eddy interaction is about the same; around 5cm for

both systems. Where this scaling may cause difficulty is in schemes which attempt

to draw relationships between TKE and C2
n.
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Figure 11. Plots show time evolution of gradient structure under advection by a Lamb-

Oseen vortex with a 4m radius, thermal dissipation ε = 0.003m2s−3, atmospheric density

of ρ = 1.2041 kg · m−2, and kinematic viscosity ν = 1.5 × 10−5 m2s−1. Times are given

above each plot relative to τe, the mean eddy lifetime. X and Y axis represent position,

and plot color represents the passive additive value (arbitrary units).

2.5 Wavelength Correction

As described in Section 1.2, C2
n decorrelates quickly with small displacements in

the centroid of a described volume, or time interval. Here the size of displacement is

small when compared to the extent of the volume itself. In addition C2
n, changes as
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the wavelength, λ, of propagating radiation changes, even when measuring identical

volumes. There is a difference between wavelength-based C2
n variation and spatial

or temporal variation of C2
n. Wavelength variation is not a chaotic process, and it

depends on the response of n to T , P , and ev at a particular wavelength. In principal,

if C2
T , C2

P , C2
ev , and all the cross terms (C2

T,ev
, C2

P,ev
, and so on) are known, it is possible

to determine the difference in C2
n at two different wavelengths with precision limited

by measurement noise and the accuracy of the n(T, P, ev) relationship which is used.

This section presents a method to estimate the wavelength dependent variation in C2
n

based on n(T, P, ev) and passive additive gradients for θ, ev and P .

The sensitivity of C2
n measurements to changes in λ can vary significantly with the

wavelengths concerned and the measurement method [16,32,62,74]. For example, the

Scintec scintillometer has relatively little λ dependence when used within path lengths

recommended by the manufacturer. This λ independence comes about because the

spectral weighting emphasizes eddies between 1 and 10cm while the first Fresnel zone

size is less than 1cm [62]. However, over larger propagation paths, in the so-called

’deep turbulence’ regime, chromatic dependence of C2
n can be seen [74]. In addition,

measurements of C2
n taken with wavelengths in the RF, which are orders of magnitude

larger than visible and IR wavelengths are expected to show significant differences.

Because of these differences, a wavelength correction for C2
n was sought, and was the

starting point of much of this research. The correction here is based on work that

has been presented before in [9, 15, 19, 21]. As these previous works presented, the

premise of the wavelength correction is that the index of refraction of the atmosphere

depends jointly on temperature, pressure, and atmospheric composition, as well as

the wavelength of the propagating wave. Under the assumption that the physical

conditions are unaffected by the propagating wave, we look for a way to estimate C2
n

measured at one wavelength from measurements taken at another wavelength (in this

58



www.manaraa.com

case, estimating C2
n an 880nm based on C2

n measured at 10.7cm).

To develop the wavelength correction, begin considering two monochromatic waves

propagating through PBL turbulence. For wavelengths which do not experience

strong resonant absorption (outside of the anomalous dispersion curve) N = (n −

1)× 106 is predominantly a function of temperature, pressure, and the ratio of water

vapor to dry air. Following the development of Tatarskii [67,68], we expect that there

is space time function which describes the local distribution of each of these param-

eters, T (~x, t), P ′(~x, t), and e′v(~x, t), respectively. As in Section 2.3, e′v signifies vapor

pressure, T is temperature, P ′ is pressure, and the prime indicates that values which

include the effects of hydrostatic balance and turbulence induced perturbations. As is

commonly done, T will be converted to potential temperature, which we will denote

as θ = T (P0/P )0.286. As we are not interested in the hydrostatic vertical variation of

P ′ and e′v, we will refer to non-hydrostatic deviations of these two quantities. That

is, from here-on P (~x, t) = P ′(~x, t) − P0 + ρgz, and ev(~x, t) = e′v(~x, t)P0/(P0 − ρgz)

with P0 being the reference pressure of 1000mb, ρ being the density of air, g the

acceleration due to gravity, and z as the vertical coordinate of ~x. The expression for

the non-hydrostatic vapor pressure comes from taking the potential vapor pressure

with local pressure at hydrostatic balance. [16]

Within a region appropriate for Kolmogorov statistics to apply we would like to

consider the structure function of index of refraction from the perspective of prop-

agating radiation. In this region, the random fields P (~x, t), T (~x, t), and ev(~x, t) all

have approximately stationary first increments. We make the customary simplifica-

tion that the propagation time of electromagnetic waves is much shorter than time

scales of the evolution of structure functions, so the flow is considered to be ‘frozen’

during propagation. If the field is locally homogenous and isotropic according to [67]

within the region of interest, then we can define the index of refraction structure
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function

Dn(r) =
〈
[n(~r + ~x1)− n( ~x1)]2

〉
. (41)

It is then natural to consider, how would the structure functions at two different

wavelengths, say Dn,10.7cm(r) for 10.7cm radiation and Dn,880nm(r) for 880nm radi-

ation differ from one another within the same region. Using Obukov’s two-thirds

law [52] for the structure function of index of refraction in fully developed turbulence

gives

Dn(r) =


C2
nr

2/3 l0 � r � L0

C2
nl

2/3
0

(
r
l0

)2

r � l0

(42)

where l0 and L0 are the inner and outer scales of the inertial sub-range. Within the

inertial subrange it is apparent that if Dn,10.7cm(r) 6= Dn,880nm(r) then C2
n,10.7cm 6=

C2
n,880nm. Therefore, we look for a method to relate the two structure function con-

stants.

The wavelength correction is accomplished by expressing the ratio of the C2
n,λ

values at each wavelength. Making use of Tatarskii’s method (21), the ratio of C2
n

values is related to the ratio of the vertical variations of n at each wavelength, dnλ/dz,

C2
n,λ1

C2
n,λ2

=

(
dnλ1/dz
dnλ2/dz

)2

. (43)

Here we have followed [16, 67] and assumed that the ratio of diffusion constants

Kn,λ1/Kn,λ2 is approximately unity.

To find dnλ/dz, a wavelength-appropriate empirical equation for refractivity, N ,

at each wavelength is used along with the local T, P, and ev from weather forecast

data. The equation is expected to have the form
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Nλ = N(T, P, ev : λ). (44)

To find dn/dz we do a standard expansion of (44) in terms of its partials ∂N/∂T ,

∂N/∂P , and ∂N/∂ev.

dN

dz
=
∂N

∂P ′
dP

dz
+
∂N

∂T

dθ

dz
+
∂N

∂e′v

dev
dz

. (45)

This gives a wavelength correction

C2
n,λ1

C2
n,λ2

=

(
∂N1

∂P ′
dP
dz

+ ∂N1

∂T
dθ
dz

+ ∂N1

∂e′v

dev
dz

∂N2

∂P ′
dP
dz

+ ∂N2

∂T
dθ
dz

+ ∂N2

∂e′v

dev
dz

)2

. (46)

As mentioned in Section 2.3, the terms in the sum of the wavelength correction, (46)

are added using the 2-norm, resulting in a wavelength correction,

C2
n,λ1

C2
n,λ2

=

(
∂N1

∂P ′
dP
dz

)2
+
(
∂N1

∂T
dθ
dz

)2
+
(
∂N1

∂e′v

dev
dz

)2

(
∂N2

∂P ′
dP
dz

)2
+
(
∂N2

∂T
dθ
dz

)2
+
(
∂N2

∂e′v

dev
dz

)2 . (47)

This correction differs from previous work in that previous work had focused

on ignoring the dP
dz

terms, and estimating the vertical gradients from NWP models

[15,19,21], or by assuming that pressure and vapor pressure variation can be correlated

to temperature variation [9]. Like previous methods, the gradients dT
dz

and dev
dz

are

estimated numerically from NWP models. A difficulty that arose in previous work was

that vertical gradients of T and ev (estimated using a first or second order differencing

scheme) would often head to zero, making the ratio in (46) ill-conditioned. [15,19,21]

As will be described in Section 3.1, gradients are now estimated using a third-order

undetermined coefficient method, which reduces the occurrence of near-zero gradients.

The performance of the wavelength correction based on the number of terms

will be investigated in this research. The correction using only the NWP-derived
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potential-temperature gradient, dθ/dz is applied, along with one which uses both

dθ/dz and the potential vapor pressure gradient, dev/dz, and one which uses all

three gradients dθ/dz, dev/dz, and dP/dz. As pressure gradients are actually radial

in nature, following the turbulent flow’s radius of curvature, they persist and are

finite even when dθ/dz and dev/dz go to zero. Because it prevents dN/dz from

approaching zero, application of the correction with the pressure term removes the

numerical instability from the wavelength correction (47).

Once all three gradients, dP/dz, dθ/dz, and dev/dz are determined, the next step

is to evaluate the partial derivatives for each wavelength. For the radar, we use (24),

restated here for convenience,

N =
79

T

(
P +

4800ev
T

)
. (48)

Taking the partial derivative of (48) with respect to pressure, temperature and vapor

pressure gives

∂N

∂P
=

79

T
, (49)

∂N

∂T
= −

(
79P

T 2
+

2 · 4800 · 79ev
T 3

)
, and (50)

∂N

∂ev
=

4800 · 79

T 2
(51)

A similar technique is applied below to Ciddor’s equations. While this solution works

well for wavelengths far from absorption lines, as λ approaches absorption features

(like the 22GHz H2O line), the wavelength dependence of N becomes apparent. In

principal, it is possible to take the partial derivative of a more complete functional

form of N(T, P, ev, λ), one which includes wavelength dependent absorption effects

and how the absorption depends on pressure. [27] However, this approach quickly

becomes complicated, especially when several absorption features are present at once.
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An alternative approximate approach is used here which leverages existing codes like

LEEDR or MODTRAN [5,22] which can accurately predict N with absorption effects

included from extensive libraries of chemical species absorption spectra. LetNC be the

continuum refractivity predicted by an equation such as (48) or the Ciddor Equation.

Let N be the refractivity which includes both the continuum effect and all relevant

absorbing species in the atmosphere. As is shown in Section 7.1, an approximation

can be made that

∂N

∂x
≈ 1

NC

∂NC

∂x
N. (52)

This computation is much faster as N can be obtained from available software pack-

ages, and 1
NC

∂NC
∂x

can be found with by dividing (49), (50), and (51) by NC . The

resulting partial derivatives are:

∂N

∂P
≈ NT

4800ev + PT
, (53)

∂N

∂ev
≈ N4800

4800ev + PT
, (54)

∂N

∂T
≈ −N

T

(9600ev + PT )

4800ev + PT
. (55)

For the 880 nm scintillometer, Ciddor’s Equations must be used. Applying the

same technique above begins with with, [13],

N = ρα
Nαs

ραs
+ ρw

Nws

ρws
. (56)

Where Nαs and Nws are the wavelength-dependent reactivities of dry air and water

vapor, respectively, under standard conditions; and ραs and ρws are the densities

of dry air and water vapor under those conditions. The dependance of N on z is

contained in the densities of dry air and water vapor in the air, ρα and ρw. Inserting
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the expressions for the density of dry and and water vapor gives,

N =
PMα

ZRT
(1− xw)

Nαs

ραs
+
PMw

ZRT
xw
Nws

ρws
. (57)

Here, Malpha is the molar mass of the dry component of the air, Mw is the molar

mass of water vapor, xw is the molar mixing ratio of water vapor to dry air, Z is

the compressibility of moist air, R is the gas constant, and P is the pressure. As

mentioned previously, this equation is simplified here to

N =
P

ZT
(A+ xwB) . (58)

Where A and B are wavelength dependent constants. As in the RF development

above, the variation is put in terms of refractivity so that the base refractivity at a

given wavelength, can be input from other models. The resulting equations for the

partial derivatives of the Ciddor equations are

∂N

∂P
≈ N

(
1

P
− dZ

dP

1

Z
,

)
(59)

∂N

∂ev
≈ N

[(
1− N0

N

)
1

xw
,− dZ

dxw

1

Z

]
f

P
(60)

∂N

∂T
≈ −N

(
1

T
+
dZ

dT

1

Z

)
. (61)

In (60) N0 is the index of refraction of the dry component of the air, and f/P =

dxv/dev. Expressions for finding A, B, Z, dZ/dP , dZ/dT , and dZ/dxv are taken from

Ciddor’s work with consideration being made for use of Pascals instead of millibars,

and his slightly different definition of N = (n−1)108. Details of the Ciddor equations

and constants, as well as the partial derivative terms are presented in Section 7.1.
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2.6 Radar Baselining

The temporal and spatial resolution of NWP models is poor when compared to the

radar, cell phone path, or the scintillometer. Despite these limitations, NWP based C2
n

is often a good predictor of the low-frequency (variation over hours and days) behavior

of C2
n. NEXRAD can provide similar temporal resolution to the scintillometer, and

has spatial resolution adequate to resolve C2
n structure along the cell phone, imaging,

and scintillometer paths used here. However, as will be shown in Section 4.8 NEXRAD

C2
n from the lowest elevation suffers from significant ground clutter, causing it to over-

estimate C2
n. Application of a noise correction by the following method will be referred

to as baselining. The baselining technique attempts to use the NWP C2
n to correct the

NEXRAD C2
n values by reducing NEXRAD C2

n values so that the mean C2
n reported

by the NEXRAD matches that of the NWP C2
n. This technique can also be applied

to cell phone C2
n to allow it to estimate optical C2

n.

Noise and clutter in the NEXRAD data may come from reflections off the ground,

precipitation, aircraft, or wildlife. Regardless of the source of noise in radar C2
n, if

the noise is reasonably white and the clear air turbulence signals have a sufficient

Signal to Noise Ratio (SNR), it may be possible to correct the radar C2
n with the

baseline technique described here. Use of this technique provides an advantage over

direct application of Tatarskii’s method as it provides the opportunity to apply path-

weighting functions to the corrected radar reflectivity. While path weighting was not

applied to the Scintillometer comparison data, it was applied in the IDM comparison.

To make the baseline correction, NWP C2
n values are computed for each radar

C2
n measurement. Then the the log of both the radar and NWP C2

n is low-pass

filtered with a sliding mean. The difference between the filtered C2
n functions is then

computed, and added to the unfiltered radar C2
n,
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C2
n,corrected = C2

n,radar(t)− C2
n,radar(t) ∗ fM(t) + C2

n,NWP (t) ∗ fM(t). (62)

Here the ∗ symbol denotes discrete convolution, and fM(t) is the filter function which

produces the M point sliding mean. Before correcting the data, precipitation sig-

natures in the radar C2
n data, and periods of unrealistic NWP gradients are iden-

tified. This is done manually for each radar data set and discussed in more detail

in Section 4.5 and Section 4.3. In about half the files (especially those which may

have contained biological signatures), precipitation signatures were verified against

ground observations, and compared well. The remaining C2
n data points from NWP

and NEXRAD are then transformed into log-space and low-pass filtered as described

above. The convolution is performed with a M-point wide rect function.

C2
n,F iltered(m) =

1

M
rect

( n
M

)
∗ C2

n(n). (63)

For comparison against scintillometer data, an M = 10 point filter was used. This

produces a 50 to 90 minute (depending on NEXRAD scanning rate) ‘sliding-average’

of the log of both signals.

When generating C2
n data for the path weighting function for comparison with the

IDM C2
n a similar baselining technique was used. First the unweighted path average

was computed using (83), just is it was for scintillometer comparisons. Next, the

baselining correction term was found for each radar measurement time, t, as

Bt = C2
n,NWP (t) ∗ fM(t)− C2

n,radar(t) ∗ fM(t). (64)

The correction Bt is then applied to the C2
n value calculated for each bin along the

path. These baselined C2
n values from the path were then used with the path weighting

function to estimate IDM C2
n.
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2.7 Cell Phone Scintillation

Cell phones experience strong variation in Received Signal Strength Indicator

(RSSI), which is related to the power received in the individual user’s channel. As it is

a periodic variation in power, the term scintillation will be used. However, the process

by which scintillation occurs is different from that of optical systems. In optical

systems, the power variance is the result of self interference of the arriving wavefront.

Often modeled as a Gaussian, spherical, or planar wave-front, the wave is distorted

via propagation though a media whose index of refraction is made inhomogeneous by

turbulence. Upon arriving at the detector, the phase over the pupil plane is distorted

from its expected, free-space propagation field. This aberration in phase results in

beam wander and random focusing and defocusing in the image plane, hence variation

in the received power.

Cell phones experience the same phase-front distortion, but cell phones have a

sub-wavelength antenna, and no pupil, so the impact of phase-front distortion (which

varies on time scales of seconds) on RSSI occurs through a different process. Cell

phone RSSI variation depends jointly on manipulation of the channel’s signal power

by the base station and multipath fading. A base station is the collection of hardware

at the cell phone transmitter which handles the RF signal processing and generation

at the cell tower. RSSI variation due to manipulation of the signal by the base-station

will appear as noise in cell phone C2
n measurements. Multipath fading is the result of

EM field interference occurring at the receiver antenna, i.e., the superposition of many

waves arriving from different paths. Cell phone scintillation is typically attributed

to this multipath phenomenon, described later in this section. It will be shown that

among other things, turbulence can contribute to power fading as well. Fading of

cell phone received power is related to, but not the same as RSSI fading. [12] RSSI

for the phones used here, is the power in the cell user’s channel after extracting the
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received signal. RSSI fading depends not only on the total received power, but also

on how reliably the user can extract their carrier. If the spectral transfer function of

the atmosphere is not flat in amplitude or linear in phase over the cell phone band,

then the RSSI may vary in addition to signal power fading. This section presents an

overview of cell phone technology and demonstrate how turbulence may create RSSI

fading.

A cell phone network is defined as one created from many individual cells which

are interconnected. Each cell is a roughly circular region within around 5km of

a base-station [75]. Each base-station provides the transceiver for communicating

with all users in a cell, and for routing their communications through the network.

Modern cell phone networks use several different methods to address a common need:

provide wide-area communications service to many users using a limited amount of

bandwidth.

Because the performance of a user’s communication channel is strongly limited by

bandwidth, cell phone companies look to implement efficient methods to allow their

bandwidth to be shared by all of their subscribers. There are four common ways

to divide the available bandwidth among users: frequency division, spatial division,

time division, and code division. [75] These four techniques are not exclusive. They

are used in conjunction with one another in order to provide efficient bandwidth

sharing. Frequency division involves breaking up the band of available frequencies

into separate sub-bands. Each sub band thus has less bandwidth, and can transmit

proportionally less information than the original band. Cell networks use frequency

division among the cells so that each cell has a portion of the company’s available

spectrum. Providers can then subdivide the cell’s band among the users, or for data,

voice, and inter-cell communications. Networks also use spatial division to more ef-

ficiently re-use their spectral allotment. While adjacent cells generally use different
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portions of the spectrum, distant cells can operate in the same band without interfer-

ing with each other. Time division works by having users take turns using the same

band. This works well for common tasks like web-surfing, and voice communica-

tions where bandwidth demands are much less than a given channel provides. Code

division, which is a spread-spectrum method, is less intuitive than time, space, or

frequency division, but it is used in one form or another for modern cell networks (3G

and on). In code division, a user’s data is encoded with their unique key. Then, the

encoded signals of all the users in the band are summed together to create the signal

for transmission. Because of the nature of the keys, each user is able to pull their

data out, and regard the data of the other users as noise. The encoding step causes

the data of each user to actually require more bandwidth for transmission. However,

this increased bandwidth cost is mitigated by allowing many users to transmit in the

same band simultaneously. Because each user’s data is spread out over a wider band,

the technique is called spread-spectrum.

As previously mentioned, scintillation in the regime of RF communications is com-

monly attributed to multipath fading. Multipath is a wave-interference phenomenon

due to waves following multiple paths from the Transmitter (Tx) to the Receiver (Rx).

These paths are created due to reflections off objects in the environment. [12] This

interference creates significant power fluctuations in both time and space. Because

the length of the various propagation paths are different, signals originating from the

cell base-station will arrive at the cell phone with path-dependent delays. While the

delays and paths are not fixed in time, it will be assumed that the processes which

vary path length occur on time scales which are slow enough so that the path is

approximately static with respect to signal processing and propagation times. Under

this quasi-static assumption, the analysis of propagation effects is simplified by the

69



www.manaraa.com

ability to take the Fourier Transform of the received signal,

S̃(f) = F {s(t)} , (65)

where S̃(f) is the frequency domain representation of the time domain signal received

by the cell phone, s(t), and F{·} represents the Fourier Transform. The received

signal can thus be represented as the sum of signals received after propagating along

MP paths plus noise, Ñ (f),

S̃(f) = Ñ (f) +

MP∑
k

S̃k(f) (66)

To find the total received multipath signal, the signal resulting from the kth path,

S̃k(f), which is make up of NSP sub-paths must be found (Figure 12). To find S̃k(f),6

one could begin by finding the frequency domain transfer function, H̃(f), [24] of the

kth path. The resulting phase and amplitude shift (in the frequency domain) of the

received signal is then found by taking the product of the original signal component,

S̃0(f), with H̃k(f). The transfer function of kth path is, in turn, represented by the

product of NSP transfer functions for each of the NSP sub-sections of the kth path.

S̃k(f) = S̃0(f0)H̃k(f) = S̃0(f)

NSP∏
j=1

eiπRj

∫
Cj

exp [γ̃(l, f)l] dl. (67)

where the kth path is made up of NSP sub-paths as shown in Figure 12. The resulting

signal component, S̃k(f), the original signal, S̃0(f), the location and frequency depen-

dent propagation constant γ̃(l, f) are complex quantities as indicated by the tilde, and

each sub-path integral is performed over the path parameter l. The quantity
√
−1 is

represented by i. Each subpath (except j = 1) is preceded by a reflection composed

of a 180o phase shift, a reflection coefficient, Rj, and possibly a Doppler shift. The
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effects of the Doppler shift are omitted in (67), in order to simplify the integration.

This omission does not significantly impact the calculation of turbulence effects on

the propagating signal as index variation is essentially frequency independent for cell

phone signals [12]. Each subpath creates an amplitude and phase variation which is

represented by the path integral. The cumulative effects of index variation, scatter-

ing, and free-space path loss are combined into the location and frequency dependence

of the propagation constant, γ̃(l, f). The resulting signal component at the receiver

would then be the sum of the signals received from all the possible paths plus the

background noise

Actual calculation of the multipath effect is rarely tractable. However one can infer

from the form of (67) and (66) how Turbulence may affect it. It is helpful to consider

effects of varying time scales. On the time-scale of RF propagation (microseconds),

turbulence will create a frozen field of spatially varying temperature and humidity

which will affect the spatial dependence of γ̃(l, f). This γ̃(l, f) field will evolve on time

scales associated with PBL turbulence, leading to fading on the orders of seconds to

minutes. As described in Section 1.2, the index of refraction of the atmosphere is not

a stationary process. Therefore, path-averaged index 〈n〉 is not expected to be fixed

over time. Additionally, coherence lengths for PBL turbulence are typically around

0.1m, so (for common PBL multipath path geometries) propagation paths would be

expected to be incoherent over most of their length. The phasor which results after

propagation through each subpath,

φ̃ =

∫
Cj

exp [γ̃(l, f)l] dl, (68)

is thus expected to vary as a non-stationary process with little to no correlation

between individual paths. It is important, then, to consider how much of a change in

the apparent path length (due to perturbations of n) is required to create a noticeable
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change in φ̃ after propagation.

Figure 12. Illustration of a path where waves reflect multiple times before arriving at

the receiver. The path is highlighted in blue and enumerated from 1-5. Objects are in

black and the reflection surfaces are numbered as Rj.

For straight line propagation over distance r,

φ̃ = einr
2π
λ . (69)

The minimal variation in ∆n required to shift the phase by π can be found by setting

the exponent in (69) equal to π,

∆n =
λ

2r
. (70)

As path distances are commonly several hundred meters to 5km, and cell phone

wavelengths are 16cm, the required variation in n would need to be on the order of
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∆n ≈ 0.0001 for an 800m path (like those used to collect data for this work), or

less for longer paths. As mentioned in Section 1.2, naturally occurring processes like

n(~x, t) have a self-similarity property where variation in a sliding average appears

similar to variations on a smaller scale. This provides for a connection between C2
n

and cell phone scintillation. NWP predicted variation in n over the course of 3 hours

is typically ∆n ≈ 0.00002, just one-fifth the required ∆n required to give a full phase

shift of π over an 800m path. Assuming that path length variations due to turbulence

are of a similar magnitude (via Kolmogorov’s self-similarity hypothesis), it can be seen

that index variation on cell paths can induce significant phase variation in each of the

k paths, which is the requirement for cell phone scintillation to be tied to turbulent

activity.

How is RSSI variation over time expected to relate to C2
n? Consider a propagation

environment where multipath effects are present. Say that the transmitter, receiver,

and all reflectors on the kth path remain stationary over the period of the evolution

of turbulence (a minute). The jth subpath from (67) would have an apparent path

length, La, which depends on the index of refraction along the path. Assuming that

dispersion is negligible, and turbulence will allow the structure of n(~x, t) to evolve

over the path, the path length at time t is

La(t) =

∫
Cj

n(l, t)dl. (71)

The temporal structure function for path length can be found. For statistically ho-

mogeneous and isotropic turbulence,

DLa(τ) =
〈
[La(t)− La(t+ τ)]2

〉
. (72)

Where t and τ are units of time. This gives the structure function for path length v
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Substituting (71) for La gives

DLa(τ) =

〈[∫
Cj

n(l, t)dl −
∫
Cj

n(l, t+ τ)dl

]2〉
, (73)

DLa(τ) =

〈{∫
Cj

[n(l, t)− n(l, t+ τ)]dl

}2〉
. (74)

This expression cannot be evaluated without knowledge of the integrand involved.

However, the upper bounds of DLa(τ) can be determined using the Cauchy-Schwarz

inequality. Let f(l) = [n(l, t)− n(l, t+ τ)], and g(l) = 1, by CS,

[∫
C

f(l)g(l)ds

]2

≤
∫
C

f 2(l)ds

∫
C

g2(l)ds, (75)

DLa(τ) ≤ L

∫
C

〈
[n(l, t)− n(l, t+ τ)]2

〉
ds, (76)

DLa(τ) ≤ L

∫
C

Dn(τ)ds = L2Dn(τ). (77)

This shows that the temporal structure function of path length can be considerably

larger than the index of refraction temporal structure function, with the constant of

proportionality growing up to the path length squared. This is, of course, an upper

bound. While the lower bounds is zero, this would imply that the path length does

not change over time via (72), which is not physically observed.

So it becomes apparent, that the structure function for path length will be a scaled

version of the index of refraction structure function along the path. As variation in

the apparent path lengths in a multipath environment will lead to signal fading, we

expect that the RSSI structure function (in time) will closely follow the temporal

path length structure functions. This leads to a very important question concerning

the relationship between the index of refraction temporal structure function and the

path-length structure functions. Unfortunately, no satisfactory theory exists linking

the spatial, Dn(ρ) and temporal Dn(τ) structure functions of atmospheric parameters
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like C2
n [16]. Taylor’s frozen flow does provide a short term relationship between the

temporal and spatial structure functions via the mean wind, but does not extend to

long time periods or large areas. There is some evidence that on certain time scales

Dn(τ) does follow a two-thirds law, similar to Dn(ρ). Despite this, it is possible to

use the radar to measure Dn(τ) along the primary (direct) propagation path from

the cell tower, to the phone. In addition DRSSI(τ) can be measured via the cell

phone. If the path scaling happens to be fairly constant (and possibly proportional

to L2 or L), then we would expect that there would be a correspondence between

DRSSI(τ) and Dn(τ). In previous research it was shown that cell phone scintillation

does correlate well with C2
n time series from NEXRAD [8]. Furthermore, the strength

of the correlation depended on the temporal width of the window used to calculate

the scintillation index for the cell phone.

In addition to the index variation, mechanical turbulence production (wind blow-

ing on trees, signs, buildings and the like) will change the propagation environment

by moving reflecting and scattering structures. This changes the actual integration

path, reflection coefficients, and may vary the Doppler shifts along the path. Longer-

term diurnal variation in the PBL vertical temperature and pressure gradients will

also affect fading as path bending causes changes to the path geometry. In addition,

the reflection coefficients for surfaces can change as dew, frost, precipitation, and

evaporation change surface composition. While these long-term variations are not

caused by turbulence, the production of PBL turbulence is related to them, so there

may be additional turbulence information due to these fading processes.

For signals with small bandwidth (quasi-monochromatic), the fading of the signal

will approximately follow the fading of the center frequency. However, for wider-

bandwidth signals, the phase and intensity fading may not be constant across the

band. In this case, the shift of phase and amplitude of components within the band
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could cause increased fading in the RSSI as described below.

Code division can be implemented using time-domain or frequency-domain en-

coding. For the phones used in this research, the cell network uses codes which are

orthogonal in the time domain. The decoding step involves a correlation of the total

received signal with a copy of the original signal. If we allow s(t) and S̃(f) to be

the time and frequency domain representations of the received signals and s0(t) and

S̃0(f) to be the corresponding original signals, then the correlation of the received

signal to the original can be found using the convolution theorem,

F−1 {(s0 ? s) [n]} = F−1

{
∞∑

m=−∞

s̄0[m]s[m+ n]

}
= F−1{s}F−1{s0}. (78)

Here F−1 indicates an inverse Fourier Transform and the over-bar indicates a complex

conjugate. Because of the correlation, phase and amplitude variation within the band

can show up as RSSI power loss. If we let H̃[f ] be the discretized representation of

path fading effects outlined in (67) and (66) and S̃ ′[f ] be the received signal without

those effects so S̃[f ] = S̃ ′[f ]H̃[f ], then we can see that the resulting RSSI depends on

the frequency domain product of S0[f ], S ′[f ] and H[f ]. Assuming that RSSI is the

maximum correlation value, it can be expressed as

RSSI = max
(
F−1{S0[f ]S ′[f ]H[f ]}

)
(79)

While the actual phase and amplitude variation within the band may still be slight,

the effect on the maximum correlation strength (RSSI) may be significant. This could

increase the σRSSI beyond the σI expected from C2
n alone. The additional variation

observed in cell phone scintillation may be due, in part, to the correlation process

described here.

To compare cell-based C2
n with measurement, the scintillation index is used. The
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scintillation index is defined as [12,32]

σ2
I =
〈I2〉 − 〈I〉2

〈I〉2
. (80)

Here σ2
I is the scintillation index, and I is received signal intensity in dBm which is

approximated with RSSI. This index is then assumed to be proportional to the Rytov

variance and the Rytov variance was then used to calculate C2
n using

σ2
I ≈ σ2

1 = 1.23C2
nk

7/6x
11/6 (81)

This result was developed for the optical process where scintillation comes from

self-interference of the primary wave with secondary waves generated by scattering

off index of refraction inhomogeneities. This effect only produces a minor fading in

cell phones compared to the multipath fading. Use of (81) is not appropriate for cell

phone scintillation. There is no reason to believe that the path length dependence for

multipath fading will be x
11/6 , and the Rytov approximation is based on an expan-

sion of the multiple scattering function in the assumption of approximately forward

scattering, which is not what is seen with multipath fading. However, as a new form

has not been developed, (81) is used, as it was in [8]. Using the new method for

calculating (80) presented in Section 3.3, resulted in C2
n values which were the same

order of magnitude as predictions made by using the RF N(T, P, ev) equation.
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III. Instrumentation

3.1 Numerical Weather Prediction

NWP provides a convenient source of atmospheric data for turbulence studies

and is used in both current and past research [1, 2, 30, 33, 47, 48]. NWP uses finite-

differencing methods to solve a many coupled differential equation (the models) at

points on a geometric grid. Operational forecasts incorporate several different mod-

els together with each model predicting different physical processes which affect the

energy and chemistry state of the atmosphere. The result of these coupled processes

is a chaotic system of differential equations whose accuracy degrades over time due

to increased sensitivity of the solution on initial conditions. Observation of this ef-

fect by E. N. Lorenz lead to his famous paper, Deterministic Nonperiodic Flow. [43]

Chaotic systems are those for which small changes in the initial conditions create

large variations in the outcome after a sufficient number of steps [30, 33]. In order

to increase the time over which a forecast is accurate, one can increase the precision

of the initial measurement state, or increase the length of time between steps in the

model. Increasing the time step size is not without cost as the spatial resolution is

limited by the time-step size. The grid size must be large enough that air parcels

cannot advect across an entire grid within one time step. This is due to the compu-

tational stability requirement known as the Courant-Friedrichs-Levy (CFL) stability

criterion. If the CFL criterion is violated, then the solution will experience unrealistic

exponential growth. Operational forecasts strike a balance between having a small

enough grid to be able to resolve weather systems, and having a large enough time

step to be accurate for a useful time into the future. [30] Four grid-points from the

Global Forecast System (GFS) 0.5o grid are shown in Figure 13.
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Figure 13. United States Great Lakes region depicting the 7km UD to VA hospital

path is depicted as a yellow line with small green markers at each end. WPAFB is

marked with the yellow pin. The four large teal markers show the four closest 0.5o GFS

grid points. The KILN radar location is depicted in the lower right quadrant by a red

target. Teal lines indicate county boarders, while grey lines are state boarders. Image

copyright owned by c©Google 2015

Because PBL turbulence requires such a small grid (centimeter scale) to resolve

the inertial subrange, the period over which such a forecast could be expected to

be accurate is very short, on the order of seconds to minutes (depending on the

velocities and models involved). It is readily apparent that direct computation of

PBL turbulence via NWP is impractical. In order to predict the evolution in an

area of interest such as the Dayton scintillometer path, which is almost 7km long,

one might choose a 1 × 1 × 8km grid. For this region, a 0.5cm grid would require

initialization of atmospheric parameters for 64 × 1016 points. As a comparison, the

operational GFS forecast uses less than 21×106 points. As direct computation over a

79



www.manaraa.com

grid of this scale is impractical with current computer capabilities, this work follows

other modern techniques which use NWP data to estimate large-scale variations, and

infer turbulence parameters from these. [1, 2, 47,78]

The two forecasts used here are the GFS and Rapid Refresh (RAP) models. Both

models use a pressure coordinate system. The RAP model uses a sigma-pressure

coordinate [72], where the base pressure level is defined as ground level, and vertical

positions are defined based on a normalized ratio between the ground pressure, and

pressure at the top of the forecast domain. This forecast did a better job describing

gradients near the surface for the Albuquerque site (See Section 4.3). The GFS model

uses a hybrid pressure coordinate system. There are fixed pressure levels in the upper

atmosphere, a sigma pressure system near the surface, and a mixed sigma/constant

pressure coordinate in the mid-atmosphere. [63] In pressure coordinate models, the

vertical spacing in meters AGL varies with weather conditions and height. Typically,

spacing in the lower PBL for both models ranges around 190 to 275m, with 220m

being typical at the height of the centers of the scintillometer paths.

The horizontal spacing of GFS is 0.5o, which is 43km spacing in the East-West

direction and 56km in the North-South direction at latitude 40o. RAP uses a 13km

grid. As grid points do not coincide with measurement locations, interpolation meth-

ods are used to determine parameters and gradients. GFS forecasts have a three hour

time resolution, and are updated every 6 hours. RAP forecasts are updated every

hour. Because both of these are much slower than the radar sampling rate, data

are interpolated in time as well. There are a total of 5 parameters which must be

estimated at the path location. All three of the partial derivatives, ∂N/∂P ′, ∂N/∂T ,

and∂N/∂e′v and the gradients dθ/dz and dev/dz. Recall that P ′ and e′v are pressure

and vapor pressure including the effect of hydrostatic balance while ev is the potential

vapor pressure, defined as ev(~x, t) = e′v(~x, t)P0/(P0 − ρgz) in Section 2.3.
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Before any interpolation, the available parameters are used to calculate θ and ev

at each NWP grid point. Both the GFS and RAP forecasts are then interpolated

vertically to the path height AGL. Because the ground height differs at each latitude

and longitude used in the grid, the first step is to convert the heights of the forecast

grid to z, height AGL. Then interpolation is done in each vertical column using a

cubic spline fit of the data to the point z0, the height AGL of the path center. A

spline fit was chosen to interpolate to z0 for each column. An example fit is shown in

the left plot of Figure 14.

Initially gradients were approximated using first and second order differencing and

nearest-neighbor interpolation to z0. However, this often produced gradients near-

zero, which led to numerical instability when using (46) or (47) before the pressure

term was added. A partial fix involved employing a higher-order technique for esti-

mation of gradients. While several options exist (the right plot of Figure 14 shows

four possible approaches), the method of finite differencing with undetermined coeffi-

cients was chosen, as is described in Appendix 7.2. Using this method to estimate the

derivatives did reduce the occurrence of numerical instability, but adding the non-

hydrostatic pressure gradient term is what actually addressed the incorrect underlying

physical assumption.
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Figure 14. The left plot shows equivalent potential temperature vs Height AGL from

RAOB launched 12 November 2015 at 1200 EST in Wilmington Ohio (blue diamonds),

and the cubic spline interpolation used to extrapolate NWP data to the path height.

The right plot shows four methods of approximating derivatives of the RAOB data on

the left. The blue circles use a first-order differencing approach, and the green diamonds

use a second-order approach. The red-dashed line uses the 3rd order undetermined

coefficient approach. The black dotted line is the derivative obtained from the spline

fit.

Once NWP data have been vertically interpolated to z0, and the required gradients

dθ/dz and dev/dz have been found at z0, the z0 values are then interpolated in latitude

and longitude. Here there is a difference in how the RAP data at Albuquerque, and

the GFS Dayton data are handled. At Albuquerque, the only interpolation method

that gave results which matched well with RAOB data was the nearest-neighbor

method. This is likely due to the large vertical variation in ground level around

Albuquerque. The GFS data around the Dayton site was interpolated using a spline.
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The first interpolation was to the latitude of the path, and the second interpolation

was to the path longitude.

In addition to the spatial interpolation, the NWP data are temporally interpolated

to match the forecast times. Here a linear interpolation is used.

After interpolation, the atmospheric parameters are processed by LEEDR [22] to

determine the refractivity N at each wavelength. These refractivity values are then

used to find the partial derivatives ∂N/∂P ′, ∂N/∂T , and ∂N/∂e′v using (59),(61),

and (60) respectively for IR-visible applications or (53), (55), and (54) for RF. Once

these partials and gradients were obtained, they could be used in the various methods

for estimating C2
n

In order to facilitate extraction of forecast data, several programs have been writ-

ten. The first is a GUI which makes setting options for the various programs easier.

There is a separate extraction routing for the RAP and GFS forecasts. This approach

was chosen because of the significant differences in how the forecasts are gridded.

These programs also perform all of the spatial interpolation, and gradient extraction.

They are threaded applications written in C, but still require several minutes to over

an hour to complete, depending on the number of forecasts and grid points involved.

The GFS versions can also locate and download data for a time period automatically.

There are Python scripts for interpolating the output data in time to match the radar

file times. The python script also formats the data in a way that is easily ingested

by Matlabr. Matlab scripts automate the use of LEEDR to extract N and the par-

tials ∂N/∂P ′, ∂N/∂T , and∂N/∂e′v. Python scripts are used to employ the methods

included here, plotting, and performance calculations.
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3.2 NEXt-generation RADar

There are excellent texts devoted to weather radar [16, 59]. This section presents

selected topics from the books on radar theory which is pertinent to this research.

The NEXRAD WSR-88D radars used here are klystron based mono-static radars op-

erating at λ = 10.7cm with a 750kW peak power and 1.56kW average power output.

The receiver bandwidth is 0.795MHz with 1.57µs and 4.57µs pulse widths available,

depending on the mode. [16,42] Resolution has been improved using super-resolution

processing techniques, [51, 70, 71] and newer radar (all data used here except for the

2010 KILN data) shows range gates at 250m, with a 1o beamwidth. Newer radars also

provide dual polarization information which may be used for scatterer classification.

The extent of radar coverage for weather detection is depicted in Figure 15.

The NEXRAD wavelength is chosen to be close enough to the 22GHz water reso-

nance so that interaction with water allows the the radar to detect hydrometers, but

not so much that the range is limited by absorption. While the range for precipitation

detection is well over 400 km, it has been observed that clear-air turbulence detection

is limited to around 150km under ideal conditions (strong TKE, temperature gra-

dients, and vapor pressure gradients) and under 30 km under poor conditions (dry

winter air) with 50 to 60km being a typical maximum range.
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Figure 15. Map of NEXRAD coverage over the continental United States.

Three components returned by the radar and used in this research are the re-

flectivity, Doppler, and Doppler spectrum width. Reflectivity is recorded in decibel

reflectivity factor dBZ, which has units of mm6
/m3 and relates the actual volume

reflectivity to its meteorological properties. The Doppler measurement returns the

integrated radial (directed away from the radar) velocity of all scatterers within the

measurement volume. The Doppler spectrum width is a measure of how spread out

the returned velocities are within a volume. A narrow spectral width indicates that

scatterers within a volume have similar radial velocity components, while a wide

spectral width indicates that scatterers are not moving with uniform radial veloci-

ties. [16, 59]
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To improve the accuracy of the dBZ recorded by the radar, preprocessing tech-

niques are applied to remove ground clutter from the radar return. In order to identify

ground clutter the radar preprocessor attempts to remove returns which are near zero-

Doppler and have a low spectral width. Unfortunately, this technique can filter out

some energy from true meteorological events, like straight-line winds. Depending on

the weather, the cost of increased ground clutter may be acceptable if it improves

detection of specific phenomena. For this reason, the radar can be run in several

Volume Coverage Pattern (VCP) modes which vary in their optimization. Some em-

phasize convection monitoring, while others detect low-level precipitation, or attempt

to reduce the effects of range folding. Based on observations in the data used here,

it appears that both noise and sensitivity of NEXRAD C2
n measurements varies with

the selected mode. In addition to Doppler filtering, clutter maps for each radar site

are used to help reduce the chance of false identification. Despite the filtering and

based on the results in Section 4.4, it appears that the data used here still not only

contain ground clutter, but ground clutter is the primary contributor of noise.

NEXRAD radar files are compressed and made available online by the National

Oceanic and Atmospheric Administration (NOAA). [50] Radar files are organized

based on a hierarchy of objects. Details of the radar structures are available on

NASA’s TRMM RSL website. [49] On the top level are several different types of mea-

surements called radar volumes. For this work, the reflectivity, Doppler, and Doppler

Spectrum Width volumes were used. Each Volume is then broken up in vertically

stacked rings called radar sweeps (Figure 18). The sweeps are then broken up in the

azimuthal direction into radar rays. Each ray is then subdivided by range increments

into bins. In Figure 16, a portion of the lowest elevation sweep from the Wilmington,

Ohio NEXRAD station (KILN) NEXRAD is depicted showing reflectivity of the bins

and rays of a clear air return. An illustration of a 3-D sweep quadrant is presented
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in Figure 17.

Figure 16. Wilmington NEXRAD Radar image showing clear air returns from the

Miami Valley region. The red lines are major highways in the area. I-70 heads East

to West along the upper the top of the image. I-75 is the left-most North to South

Highway. I-71 heads from South-East (Cincinnati) to North-West (Columbus) along

the lower right of the figure. Also depicted are I-675, US-35, and State-Route 4 in and

around Dayton, Ohio.

Radar images do not have standard spacings for the sweeps, rays, and bins.

NEXRAD radars have several different coverage patterns which are used to optimize

the radar for the current weather conditions. Turbulence detection is most effective

in one of the two clear-air modes. In these modes, radar sensitivity is maximized at

a cost of increasing the interval between measurements. Clear-air reflections are still

visible in precipitation modes, but at reduced range. Of course, turbulence echos are

not visible in areas with precipitation, but it’s quite common for there to be precipi-

tation far from the turbulence measurement site (recall that the radar range is over
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400km) which causes the radar to be in one of its precipitation modes.

Figure 17. A quadrant of a NEXRAD measurement volume. The volume is divided

by elevation angle into sweeps. Each sweep is subdivided by azimuthal angle into rays.

Each ray is subdivided by range into individual bins. The spacing of sweeps, rays, and

bins is irregular, and there are many structures which are ’empty’, having no data.

Automated extraction of radar data is made difficult by the variable nature of the

radar scan geometry. [8, 10, 49] Each volume that is opened has information about

the number of sweeps, and their spacing. Each sweep, when opened has information

about the number of rays, and their spacing. The number of rays can be different in

every sweep within a single file. Bins are similar to rays and sweeps in that each ray
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may have different bin spacing, with different initial distances, and different numbers

of bins. Furthermore, there are missing bins, rays, sweeps and volumes, and some

of the bins contain data, but the data are corrupted. In order to prevent software

crashes, it is important to check each element and make sure that it is not empty

before trying to access the data. The data must all be checked for bad values as well.

The program written for this research opens radar files, determines their geometry,

and determines which bins coincide with a desired path.

Figure 18. Illustration of a weather radar sweep. The azimuthal divisions of the sweeps

are rays, and the radial divisions of the rays are bins. In each radar sweep it is possible

for rays or bins to be missing. Also the spacing and number of bins varies from ray to

ray, the spacing and number of rays varies from sweep to sweep.

The most straightforward method for using radar to measure turbulence is done

by relating the clear-air mode (no precipitation) reflectivity measurement of the radar

to the intensity of the turbulence. Simply put, stronger turbulence creates stronger

returns to the radar. A quantified estimation of this relationship is given in [16,19,21],
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C2
n = 2.63π5λ−11/3 |Kw|

10dBZ/10

10006
. (82)

Following Doviak’s convention, λ is the wavelength, Kw is the complex index of

refraction for water, and dBZ is the reflectivity.

The first adaptation from radar to scintillometer measurements is a correspon-

dence between the region being measured by the scintillometer to the radar measure-

ment volume. This correspondence has been presented in previous work [10] and will

be summarized here. The optical system propagates along a straight, narrow path

which passes through, or just below, several of the 3-D bins that make up a radar

measurement volume, as in Figure 19.
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Figure 19. A scintillometer path (red beam) passing under 3-D radar measurement

bins.

Due to variations in the NEXRAD volume geometry, the mapping of radar data to

the scintillometer path must be recomputed for each radar measurement. [8, 49] The

mapping is accomplished by first determining which radar data bins the scintillometer

path passes through. If the bottom of the lowest radar sweep is above the scintillome-

ter path (as pictured in Figure 19) then the bins which are closest to the scitillometer

path are used. A weighted average of the measured reflectivity values is then com-

puted for the bins that the scintillometer path passes through. The contributions of

the reflectivity measurements to the average are weighted by the proportional length

of the path within each measurement bin, li, via
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〈dBZ〉 = 10 log10


∑
i

liZi∑
i

li

 . (83)

Here li is the length of the path within the ith bin, and Ri is the reflectivity of the

ith bin. Because clear air returns are weak, paths often have bins with no measurable

reflectivity. The contributions of ‘empty’ bins are removed from the path average.

Once this path-averaged reflectivity, dBZ, is obtained, it is then used to compute the

radar C2
n for the path via (82).

Figure 20. Radar main beam height vs. distance using the four-thirds assumption

(blue). The upper line is for 1o of elevation and the lower is for horizontal propaga-

tion. The short red line indicates the Dayton scintillometer path after accounting for

elevation. Horizontal distances are in kilometers and vertical distances are in meters.
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In addition to the path average, the individual bin data, geometry, and the portion

of the path contained in the bin are recorded. Measurements of wind velocity and

spectrum width are also collected in the same manner, with both path averages and

bin by bin data being returned. The path averaged data are used for comparison to

the scintillometer and cell phone measurements, and the bin by bin data are used for

the IDM technique.

The extraction of NEXRAD data is accomplished using purpose written C code

which employ’s NASA’s RSL. [49] It was noted that radar files are sometimes cor-

rupted and can cause the RSL library to crash, so a Python script was written to

open all files once with the RSL before processing, and delete any files which cause

the RSL to crash. Extraction times are generally shorter than NWP extraction, but

threaded extraction still takes about 5 to 30 minutes to complete. Radar data must

be acquired before downloading.

3.3 Cell Phone Data Collection and Processing

Cell phones have a variety of sensors whose data are available through prewritten

implementations of the Androidr operating system. The advantage of using existing

Java methods to access data (should be) convenience, fast development, and platform

independence via standardization. The difficulty is that data collection methods

will depend on how these methods are implemented. For this work, the cell signal

characteristics, time, and phone location are recorded. It would have been preferred

to be able to query the device state on a regular basis, say every 30 seconds. However,

the Android Operating System (OS) is not structured in a way that is conducive to

this approach.

For mobile devices, security and power consumption are both significant device

performance concerns. To address these, the OS of Android devices implements a
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broadcast-listener model for on-board sensors. In this model, applications do not

request data from devices. Instead, applications can request that the OS activate the

sensor upon opening, and then the application implements a listener for the sensor.

Once activated, the sensor will broadcast its state periodically (when a particular

sensor chooses to broadcast is sensor and device specific). Any applications which

have an active listener for that particular sensor will then receive the data the sensor

chose to broadcast. For the phone-state sensor (which gives signal power information),

it will broadcast whenever it notices a change in the RSSI of either the voice, or

data channel. It also appears to broadcast based on other parameter changes, as

some data were collected when neither the voice nor the data RSSI changed. The

position sensor (GPS) also broadcasts based on a state-change basis, when there is a

change in location. From a data recording standpoint, this broadcast-listener model

has the advantage of reducing the amount of data needed to represent the device

state variation over time. However, the irregularity of the data sampling rate makes

implementation of many common statistical analysis tools more difficult than it would

be with evenly spaced sampling times.

Data collected here are available from three different paths. The first is the same

path used in [8] and is pictured in Figure 21. This path is 623m in length. The second

path used is longer and does not have a direct line of sight to the tower. It is 1.77km

in length. The third path is 621m long, and has a direct line of sight to the tower.

94



www.manaraa.com

Figure 21. Satellite image of Transmitter to Receiver path for the first cell phone data

collection location. The path length is 623m. The distance from the KILN radar (not

shown) is 42km. Image copyright owned by c©Google 2015.

The phones used here report RSSI for two signals: voice and data. Both of these

channels require a method for sharing the available bandwidth among the users.

The carriers in this case, Sprintr and Verizonr, use a bandwidth division scheme

known as Code Division Multiple Access (CDMA). While one might expect that

the two channels (voice and data) from a single handset would show similar RSSI

variation, this was not the case. While these signals showed high correlation when

comparing long term (many hours) data, they often showed poor short term (several

minutes) correlation. This correlation behavior was seen for both RSSI and C2
n values.

Furthermore, two identical model phones were used at times but in close proximity,

and would also show dissimilar behavior.

This disagreement is not unexpected because both the base station and phone are

constantly adjusting the signal power through processing and hardware gain mecha-
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nisms. Since there is no available information about these processes, they appeared as

considerable noise in the signal power measurements. Furthermore, each channel has

a different spectral signature. The two channels used different carrier center frequen-

cies. The combination of using separate bands and each channel’s unique spectral

signatures could cause differing interference effects from the same environment.

The logging software uses program functions provided in the Android SDK. This

allowed for reasonable development times, but also limited the functionality of the

device. It would have been preferred to record the RSSI on a set time interval,

perhaps every second, or half second. A good method for doing this was not found.

Instead, the application opens a log, and records an entry every time the position

or RSSI changes. For this reason the records are not evenly distributed. Some time

periods have over 100 changes in a minute, others have less than one change every

five minutes. Furthermore, the phone would sometimes close the log without notice,

or stop taking measurements for extended periods of time. This lead to very few

long-period measurements. Despite these issues, 42 data sets of reasonable length (4

hours or more) were recorded. In the recordings, the base station location, and local

time is provided along with the power levels of both channels, and the phone’s Global

Positioning System (GPS) location. This provided sufficient information to calculate

σ2
I , and from it estimate C2

n. Attempts were made to avoid moving the phone while

measurements were taken. This was easiest to accomplish at night, which is why

many of the logs begin in the evening and end in the morning.

The original RSSI logging application code was lost due to a hard-drive crash. A

new version of the application has been developed which appears to be more stable.

Two phones of the same model were retired from their duties as phones, and now

are dedicated measurement devices. The measurement timing issue still persists, but

continuous measurements are now available from periods on the order of weeks rather
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than hours.

Previously, data were interpolated to an evenly sampled space before processing.

[8] This solved some implementation problems, but created others. Because the space

between broadcast events varied from seconds to hours, it was quite possible that there

would be zero variation in RSSI within a period. These zero (or near-zero) variances

led to numerical instability in some algorithms, and unrealistic drops in apparent C2
n

which needed to be filtered out. The RSSI interpolation step has been removed from

initial data processing in this work. Instead of having a fixed time window, means

and variances are computed for variable sample spaces directly (as described below).

The variance and mean RSSI values used in (80) are calculated using the approach

presented here. This approach was shown to provide more appropriate C2
n values than

those obtained in previous work.

The new method used to calculate the RSSI mean and variance overcomes numer-

ical stability issues which arise from variable sample spacing. To arrive at the new

method, make the assumption that there exists a function which describes the true

RSSI over time, RSSI ′(t). This function is sampled at discrete times. The sampling

time itself is an increasing function, ti+1 ≥ ti ∀ t with variable spacing drawn for the

set of natural numbers. That is, ti+1 = ti + τi with t ∈ Z and τ ∈ N , {0, 1, 2, 3, . . .}.

The distribution of τ is not known, and comparison to a Poisson fit shows that the

observed data exhibits a more narrow peak and fat tail than Poisson distributed data

(Figure 22).
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Figure 22. Four distributions of τ , the temporal spacing (in seconds) between cell

phone RSSI samples. Blue bars indicate the histogram of relative number of samples

(times > 40s were omitted from the histogram, maximum observed τ = 200s ). The red

line indicates a Poisson process curve fit to the histogram data. Plots are drawn from

different months of the year. Clockwise from top left the corresponding months are

March, May, July, and September.

Regardless of the underlying distribution of τ , it is necessary to find an acceptable

means of estimating the mean RSSI over time, 〈RSSI ′(t)〉 and the square of its

first moment σ2
RSSI′ from the discretely sampled data, RSSI(ti) = RSSI ′(ti) + Ni

where Ni is noise it the ith sample and ti ∈ t0, t1, t2, . . . , tM−1 ⊂ Z are the M sample

times with a maximum resolution of one second. Because the underlying function

RSSI ′(t) is unknown outside of the sample points, any attempt to estimate the
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moments of RSSI ′(t) from the samples RSSI(ti) will have to make assumptions

about the behavior of RSSI ′(t) between points. Here an assumption is chosen which

leads to a numerically stable method for estimating 〈RSSI ′(t)〉, and σ2
RSSI′ .

Assuming that RSSI ′(t) is an integrable function, 〈RSSI ′(t)〉 over a given interval

is defined as,

〈RSSI ′(t)〉 =
1

T

∫ tM=T

t0=0

RSSI ′(t)dt =
1

T

M−1∑
i=0

∫ ti+1

ti

RSSI ′(t)dt. (84)

Figure 23. Cell phone voice RSSI samples vs time. Blue triangles represent the sam-

pled points, and the solid black lines depict the piecewise trapezoidal function used to

approximate the unknown RSSI ′(t) function. RSSI values have been increased by 75dB

so that integrating trapezoids are easier to depict.
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It is then assumed that the integrals between sample points can be approximated

using a piecewise integration of trapezoidal functions (Figures 23 and 24),

1

T

M−1∑
i=0

∫ ti+1

ti

RSSI ′(t)dt ≈ 1

T

M−1∑
i=0

∫ ti+1

ti

RSSI(ti) + t
∆RSSI

∆t
dt. (85)

Here ∆RSSI = RSSI(ti+1) − RSSI(ti) and ∆t = ti+1 − ti. So long as RSSI ′(t) is

of bounded variation, the RHS of (85) will approach the LHS in the limit that the

largest interval τ → 0 via the standard convergence of a Riemann sum to a Riemann

integral.

Figure 24. Close up of the ith polygon to be integrated (shaded green). Datum points

(blue triangles) are taken from the data originally shown in Figure 23.

It may be possible to test to see if there is reason to believe this trapezoid approx-
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imation is flawed. Begin by finding the mean over the entire data set using just the

first and last point and the trapezoidal hypothesis. Then, add one of the data points

back in and recompute the mean. Add another point, and recompute the mean again,

and so on until all available m-point intervals are used to compute the mean. If the

mean value shows a tendency converge, then although there is no proof that conver-

gence would continue if the missing unsampled portions of the RSSI’(t) function were

added to the integration, there would be no reason to believe that convergence would

not happen.

This section shows how the mean and variance of a piecewise-trapezoidal function

f(x) =



y0 + (x− x0)∆x0
∆y0

if 0 ≤ x < x1

y1 + (x− x1)∆x1
∆y1

if x1 ≤ x < x2

...
...

yi + (x− xi)∆xi
∆yi

if xi ≤ x < xi+1

...
...

yM−1 + (x− xM−1)∆xM−1

∆yM−1
if xM−1 ≤ x < xM

(86)

with ∆xi = xi+1 − xi, and ∆yi = yi+1 − yi can be computed when the integer-sized

intervals are irregular. The area of each trapezoid can be broken into a rectangular

and triangular part for which it is obvious that,

Ai =

∫ ∆xi

0

f(x)dx = yi∆xi +
1

2
∆xi∆yi. (87)

Here Ai is the area under the ith trapezoid. By factoring out the ∆x term, expressing
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it explicitly, and combining yi terms Ai becomes

Ai =
1

2
(xi+1 − xi)(yi + yi+1). (88)

The difference in x values may suffer catastrophic cancellation. To avoid this when

applying the method to cell phone data, leave all times as integer seconds, and define

t0 = 0. For time periods used here (days to months) values will remain small enough

to avoid any numerical instability. To find 〈RSSI〉 substitute (88) into (85) to get,

〈RSSI〉 =
1

2T

M−1∑
i=0

(ti+1 − ti)(RSSIi+1 +RSSIi). (89)

Finding the squared-variance for the trapezoidal function f(x) is done in a similar

manner. Begin with the piecewise defined variance assuming a uniform (over time)

PDF,

σ2
f =

1

T

M−1∑
i=0

∫ ∆xi

0

(f(x)− 〈f(x)〉)2 dx. (90)

For a zero-mean trapezoidal function g(x) = f(x) − 〈f(x)〉 with samples at xi with

value ηi = yi − 〈f(x)〉, the squared variance can be found from the area under g2(x),

Si =

∫ ∆xi

0

g2(x)dx =

∫ ∆xi

0

(
ηi + x

∆ηi
∆xi

)2

dx. (91)

Here ∆ηi = ηi+1 − ηi. Evaluating the square gives

Si =

∫ ∆xi

0

η2
i + 2x

ηi∆ηi
∆xi

+ x2

(
∆ηi
∆xi

)2

dx. (92)

On integration (92) becomes

Si = ∆xi

[
η2
i + ηi∆ηi +

1

3
∆η2

i

]
. (93)
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Substitution of (93) into (90) gives

σ2
f =

1∑M−1
i=0 ∆xi

M−1∑
i=0

∆xi

[
η2
i + ηi∆ηi +

1

3
∆η2

i

]
. (94)

Using the same numerical considerations as in (89), will not necessarily be stable.

The factor ∆η2
i /3 could be ill conditioned, and the sum within brackets could also

suffer from catastrophic cancellation. In practice, values of ηi typically vary from −10

to 10 with integer steps when working in the dB space. Numerical stability becomes

an issue in linear space. Just as Rytov variance for optical scintillation is computed

in log-space, RSSI variance calculated using (94) will be done in log space where

numerical stability is not a concern.

While a higher-order polynomials could be used as the integrating function (for

example, the popular Simpson’s Rule could be adapted to the irregularly-spaced

data), the computational cost of using these methods (for this data) is not justified

by the relatively small reduction in error. The weights of the integrating polynomial

must be found for each interval because the spacing is irregular. Furthermore, the

data occasionally has ∆xi = 0, so direct application of methods to find the polynomial

constants will result in division by zero. In order to use a higher-order method, the

data would have to be filtered to remove all ∆xi = 0 points, then the constants

of integration could be found for each sub-interval. By comparison, the trapezoidal

method presented here requires no computation of polynomial weights, and handles

∆xi = 0 without instability so long as
∑M−1

i=0 ∆xi > 0 which holds true for the cell

data and M > 1.

Once 〈RSSI〉 and σ2
RSSI are found, the scintillation index can be found using a
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modified, but equivalent form of (80)

σ2
I =

σ2
RSSI

〈RSSI〉2
. (95)

To find C2
n, σ2

I is used in (81). In order to find C2
n over time, which can then be

compared to NWP and NEXRAD based C2
n, a fixed M = 100 sliding window is used.

Because of the irregularity of τ , the temporal width of this window will also vary.

The arithmetic mean of the sampling times is used to represent the time of each C2
n

measurement, 〈t〉 = 1
M

∑M−1
i=0 ti.
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IV. Measurement Noise, Uncertainty, and Clutter

As there are several methods for determining C2
n, it is important to consider how

clutter, noise, and uncertainty play into each component system individually and

when brought together into an integrated system. The impact of these on the sys-

tems described herein is a limit on performance quantified by the metrics presented

in Section 2.1. Unfortunately, quantification of significant clutter, noise, and uncer-

tainty was not available for the input data used herein. So, while these impacts can

be studied qualitatively, it is not possible to determine if a particular method is per-

forming within expected bounds. Measurements of structure function constants can

vary by more than an order of magnitude in just one minute, or by points which are

only a few meters apart. Because variation is over orders of magnitude, plots and

comparisons are done in common log space.

When one considers the resolution scales of the data sources involved, it becomes

apparent that high frequency variation may only be captured in a statistical sense, and

we look for agreement in the low-frequency data components. A valid question centers

around how important are the differences in time scale. That is, how much error would

be expected if measurements are not simultaneous? With respect to the RMSE error

criteria, it is possible to estimate the best-case scenario. That is, if the data were

correct, but sampled at a much lower rate (as the NWP and NEXRAD data are), or

if data have a temporal uncertainty (as the NEXRAD data have), what would the

RMSE be? To find this, scintillometer data are down-sampled via nearest-neighbor

interpolation to the radar and scintillometer time-stamps. The down-sampled forms

are then up-sampled to the scintillometer data rate using the same linear interpolation

which is used with the estimates, and the RMSE is computed. This gives an estimate

of the best-case scenario for estimation.

The first two sections here describe both scintillometer and the IDM methodology
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from a confidence standpoint. Next, confidence issues in the NWP data are presented,

followed by general considerations for the NEXRAD radar. Then, several sections

address various possible sources for noise in the NEXRAD data. Finally, cell phone

scintillation uncertainty and noise are discussed.

4.1 Scintillometer Error and Uncertainty

Both scintillometers used for comparison are large-aperture scintillometers. These

are standard tools for measuring C2
n along paths which vary from a few hundred meters

to about 10 km. The scintillometer used at the Dayton location is a Scintec BLS2000

[62]. Like other large aperture scintillometers, the BLS2000 integrates C2
n over the

path with a stronger weighting toward the path center and turbulence near either

end of the path having a negligible effect. The scintillometer has a spectral weighting

function which peaks around 3cm for the conditions of the Dayton path, which is

close in scale to the 5cm peak spectral weighting of the NEXRAD. Scintillometers do

suffer from saturation effects as well as a measurement floor. The effective range of

measurements depends on the system which is used, its configuration, and the path

length. For the Dayton path, the scintillometer is effective for 4 × 10−17 ≤ C2
n ≤

6×10−13. In the data used here, C2
n typically peaks at 1×10−14 during the day, with

a few occasions reaching up to 3× 10−14. Most days, the lower bounds of C2
n is 10−16

or greater. There are a few instances when the lower bound reaches down to 4×10−17,

and many periods when there was no recorded C2
n. Some of the missing data may be

due to C2
n being too low to detect. This effect is exacerbated in the winter and during

storms. The reason being that the window used for the scintillometer receiver blocks

a substantial portion of the IR energy. A replacement window of IR-transparent glass

was used, but was not water or air-tight. In cases of poor weather, data collection

was intermittent.
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There are large fluctuations in the scintillometer C2
n. For this reason, low-pass

filtering is often applied to get a smoother measurement. The Albuquerque scintil-

lometer uses a slightly shorter path, but the spectral and path weightings are similar

to that of the Dayton path. While the effective bounds for the Albuquerque site are

slightly different from those of the Dayton site, they are sufficient for the measure-

ments taken.

4.2 Image Derived C2
n Uncertainty

The IDM technique has been accepted for presentation at the 2016 IEEE Aerospace

conference [4]. While this technique is not part of the research presented here, the

radar data were used to compare against the IDM results. As the technique is new,

the available data cover only a short period of about 1 day. As has been seen in

comparison with scintillometer data, it is quite possible for there to be significant dis-

agreement on a given day. Difficulties were exacerbated by cloud cover, and storms

within the radar coverage area which kept the radar from operating in clear-air mode.

Without more data, no definite conclusions can be made. That being said, generating

the comparison NWP/NEXRAD C2
n data met with its own challenges with respect

to creating suitable data for use in the path weighting functions of the IDM.

The path weighting function, w(l), for the IDM technique varies depending on the

size and spacing of the objects in the image which are used in the IDM technique.

Ideally, the continuous C2
n profile over the path would be available, and the resulting

measured C2
n would be found from

〈
C2
n

〉
=

∫ L

0

w(l)C2
n(l)dl. (96)

In practice this is not possible to evaluate (96) properly, because there are often several
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bins with no measurable reflectivity (Figure 25). For a constant-valued weighting

function, this is not an issue, as missing data can be handled using (83). For a non-

constant path-weighting function, the missing data will introduce errors, regardless

of how the data are handled. In fact, even in cases where the radar provides complete

data for the path, errors will be introduced. This is because the radar reflectivity

is based on the volume-weighting function of the radar beam itself. In general, the

volume weighting function of the radar is not expected to give the same 〈C2
n〉 as the

path weighting function, (96), passing through the volume.

Figure 25. NEXRAD radar image showing the IDM path in yellow drawn over reflec-

tivity bins from 23 July 2014. The radar time-stamp is 1512 GMT, or (local time) 1112

EDT. The Good Samaritan Hospital is located on the West (left) end of the path, and

the camera is located at AFIT on the East end of the path. Black areas indicate bins

with no measurable reflectivity. Image generated using the NOAA WCT viewer.

The differences in weighting between the radar and IDM technique exist, but little
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can be done to account for them. On the other hand, there are several methods for

handling missing data in the path weighting function. The first, is to substitute data

for the missing sections. The substituted values are, of course, some form of a guess

about what the actual value of C2
n is within the bin. Common guesses could include

interpolating from existing data, using a rule of thumb value, using a mean value from

NWP, or setting data to a default value. All of these methods introduce error into

the measurement. In some cases, the error may be slight. In others the guessed value

may dominate the remaining measured data when determining 〈C2
n〉. The impact of

guesses will depend on which data are being substituted, w(l), what values are chosen

to substitute, and how closely the guess approximated the actual C2
n.

Another option was used in [4]. The path weighting function was re-normalized,

so that it only included the valid data. Here 0 ≤ l < 1 is a parameter of the path

length. The path’s location is defined by ~x(l) and C2
n(~x(l) gives the radar reflectivity

at point ~x as the value of the bin ~x is within. If we define a function which represents

where valid NEXRAD data are present within the path as

v(l) =


1, bin contianing ~x(l) has data

0, otherwise

, (97)

then the path weighting function can be renormalized via

〈
C2
n

〉
=

∫ 1

0
w(l)v(l)C2

n [~x(l)] dl∫ 1

0
w(l)v(l)dl

. (98)

This choice does not introduce incorrect data, but does improperly weight existing

data. Despite the fact that the weightings are no longer correct, the proportionality

is maintained between existing data.

The turbulence eddy size most strongly weighted by this method has not been
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established yet, but is expected to be larger than the telescope aperture, but smaller

than the outer scale of turbulence. Because this technique is based on tilts, the first

derivative of the phases, it is expected to be able to overcome saturation issues which

are encountered for intensity based scintillometery.

4.3 Uncertainty in NWP

As mentioned in Section 1.5 NWP has spatial and temporal resolution which

is very coarse when compared to PBL turbulence. Keep in mind that turbulence

advects with the mean wind, and it is not uncommon for scintillometer C2
n to change

by half an order of magnitude from minute to minute. For a 5kn wind, this would

indicate that C2
n can vary significantly over just 150m. Compare this to the GFS

forecast, which was used in much of this work. GFS has a 0.5o resolution in both

longitude and latitude. This results in a grid spacing which is much larger than the

propagation paths which are compared to (Figure 13). Like other NWP models, the

vertical resolution of the GFS grid is much finer than horizontal resolution. The GFS

forecast uses a pressure coordinate, and levels are spaced 25mb apart from 1000mb to

800mb. This corresponds to about 220m of separation in the lower PBL (where the

scintillometer paths are located). Grid spacing necessary to resolve the structure of

turbulence would need to be finer than the typical inner scale, 1.0cm. Their coarse

spacing precludes using GFS (or other NWP models) to determine the perturbation

structure of the lower atmosphere. Instead, NWP is used to obtain gradients of the

mean (slowly varying) atmospheric parameters, which can be used with Tatarskii’s

method, (23), to estimate structure function constants.

These gradients are not without uncertainty. Forecast models are numerical so-

lutions for several coupled partial differential equations. As such, they must be ini-

tialized with boundary conditions which match real-world conditions over the grid.
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A combination of previous forecast output and available observation data is used to

generate the initial conditions. Both sources have uncertainty and noise, which is car-

ried forward into each realization of the model. No attempts were made to account

for this uncertainty in the NWP data. As a partial mitigation, the most recent NWP

model was used for each data time. This means that for GFS, the +0 and +3 hour

forecast data were used when available. At times, a forecast would not be available,

or the available version would be corrupted. In this case the most recent available

forecast is used. For example, the data for hours 1200 and 1500 normally come from

the 1200 forecast at the +0 hour and +3 hour time steps. If the 1200 forecast is not

available, then both the 1200 and 1500 data must be found from a previous forecast.

In order to get the 1200 and 1500 data, then the 0600, would be used with its +6

hour and +9 hour steps. If the 0600 hour forecast is not available, then the 0000

hour forecast would be used with the +12 and +15 hour forecast, and so on. This

minimizes the impact of the stepwise increase in forecast uncertainty.

The bounds of accuracy required for the NWP forecasts is determined, by com-

paring error in C2
n by deviations in temperature to the error expected to be induced

by the low temporal resolution (hours) of the forecast compared to the scintillometer

(1 minute). This comparison shows how large the error in NWP gradients (their data

which are used to estimate C2
n) must be to be as large as the smallest possible error

induced by resampling. It turned out that the 〈RMSE〉, averaged in log space over

all 12 months of data for the KILN data, is 0.3286. Based on how the gradients are

used in (21), the NWP gradients would need to be off, on average, by a factor of 1.5

in order to be as large as the smallest possible resampling error. That is

0.7 <
xest
x0

< 1.5 (99)

where xest is the NWP value and x0 is the true value. Comparison with RAwindsonde
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OBservation (RAOB) data shows that this condition is satisfied for GFS forecasts.

The resampling 〈RMSE〉 for Albuquerque was higher at 0.4120. However, there

were also significant systematic errors in gradients obtained from the RAP forecast,

which was used to obtain gradients for the Albuquerque estimates. The source of these

systematic errors could not be identified. Instead, a scaling factor (typically 1/20 )

was applied to RAP-derived gradients in order to minimize the error between these

forecasts and available RAOB data. To determine the scaling factor, RAOB gradients

were compared to RAP gradients at several times through each month. Then the

mean scaling was applied to all the RAP data that month. The magnitude of the

scaling varied from month to month, and affected both the temperature and pressure

gradients. This systematic error was also seen when RAP was used to compute

gradients for the Dayton data. Note that GFS gradients did not appear to have this

issue and were used for all included Dayton NWP data.

The RAP was chosen because of its fine resolution in latitude and longitude. Ini-

tially the GFS was used to process the Albuquerque data. However, it was noted that

NWP predictions of C2
n were poor compared to those of Dayton. After searching for a

cause, it was discovered that the root issue was the NWP interpolation scheme used.

As written, the NWP code uses a grid of 16 points to do a cubic spline interpolation

in latitude and longitude to the path location. This method was originally devel-

oped for the vertical interpolation. The method was extended to use as horizontal

interpolation. The issue when applied to Albuquerque is that the ground height at

the Albuquerque site is much higher than the ground height at some of the included

nearby GFS grid points. Because of the significant vertical variation, estimates of

temperature, pressure, humidity and their gradients were found to be incorrect. The

RAP forecast was chosen as it has much finer resolution. However, the RAP pro-

cessing algorithm also had to be simplified to use nearest neighbor for its horizontal
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interpolation. It turns out that the closest GFS point is about 1/2 the distance of the

closest RAP point to the Albuquerque path location. Unfortunately, gradients from

this GFS forecast site did not match well with RAOB data either. GFS temperature

values for this site (at pressures just above ground level) did not show the trends or

structure of RAOB data. After accounting for the systematic errors in the vertical

gradients, RAP data did the best job matching observed atmospheric conditions at

the Albuquerque site. For this reason, RAP data were used for Albuquerque.

In addition to raw NWP inaccuracies, there may be errors in some of the standard

parametrization used for Tatarskii’s method (23). This was noted when comparing

the IDM technique. The value of C2
n determined was significantly lower than measured

during periods of a stable PBL. It was discovered in this data that the ratio of the

eddy diffusivity of heat to the eddy diffusivity of momentum, KH/KM , determined

from the Kondo equation [38] became quite small during stable conditions. The

quantity KH/KM is used the relate the flux Richardson number, Rf , which is the ratio

of the buoyant production to mechanical (shear) production terms in the TKE budget

equation

Rf =
Buoyant Production

Shear Production
, (100)

to the measurable Bulk Richardson number, Ri through the relation

Rf ≈
KH

KM

Ri. (101)

The approximation is due to the use of first-order closure to handle ever expanding

perturbation terms. Kondo’s equation is an empirical fit of the ratio KH/KM to Ri
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and is defined as [38]

KH

KM

=



1
7Ri

Ri > 1(
6.837Ri + 1

1+6.837Ri

)−1
0.01 ≤ Ri ≤ 1

1 Ri < 0.01

. (102)

The determination of Ri and KH/KM relies on temperature and wind shear from NWP.

However, NWP are often unable to accurately predict the formation and impact of

clouds on local temperature structure. It has been noted that Temperature based C2
n

estimates tend to be noticeably larger than scintillometer measured C2
n under cloudy

or overcast conditions. For example, Figure 26 shows estimates and scintillometer

data from April 20-30 of 2013. Comparison with local weather observations showed

that skies were overcast with the exception of two periods. The first clear to partly-

cloudy period ran from the latter part of the 20th through the first half of the 23rd,

and the second ran from the 25th through the end of the 27th. While at appears that

C2
n estimates still do well for a few hours after clouds first arrive, the correspondence

between sky-cover, and C2
n over-estimation is apparent. In the results, Section 5.1,

the increased error during the months July-September for the Dayton estimates is

observed to be due to this phenomenon.
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Figure 26. Estimated C2
n and scintillometer C2

n vs time from the Dayton site taken

20-30 April, 2013. Scintillometer data are blue dots in all three plots. Green dots

are estimates made using Ciddor’s equation using only temperature (top), using tem-

perature and vapor pressure (middle), and using temperature, vapor pressure, and

non-hydrostatic pressure gradients (bottom). Shaded areas indicate periods of over-

cast skies and x-axis ticks occur at local sunrise and sunset.

There are two NWP gradients which could be causing the increase in NWP-

estimated C2
n; potential temperature and wind velocity. The magnitude of the squared

potential temperature gradient
(
dθ
dz

)2
is proportional to C2

n. Clouds during the day-

time reduce the large instability which is commonly present due to solar heating of

the surface. At night, clouds reduce the stability by reducing radiative losses at the

surface. In both cases, they significantly reduce the magnitude of dθ
dz

. If NWP is

not properly capturing these radiative processes, then it could be over-estimating C2
n

because of overestimation of dθ
dz

.

115



www.manaraa.com

The possible cause of decreased C2
n in the IDM comparison could be large Ri and

thus low KH
KM

. Ri is defined as

Ri =

g
θv
dθv
dz(

dU
dz

)2
+
(
dV
dz

)2 . (103)

Here g is the acceleration due to gravity, θv is the virtual potential temperature, U and

V are the zonal and meridional components of the wind. Ri is thus proportional to dθ
dz

and inversely proportional to squared wind shear,
(
dU
dz

)2
+
(
dV
dz

)2
. NWP overestimation

of dθ
dz

or underestimation of the shear would cause Ri to be too large and KH
KM

based on

the Kondo equation and C2
n to be underestimated. A consistent underlying cause of

these discrepancies during cloudy periods has not been found. And there are several

cloudy periods where NWP based C2
n estimates appear to be fine. However, periods of

severe overestimation and underestimation have thus far been associated with cloudy

periods.

The RAP forecast would often return potential temperature and vapor-pressure

gradients which were well over an order of magnitude larger than those seen on the

GFS and RAOB data. It was also noted that these abnormally large gradients led to

large errors in C2
n estimates. For this reason, a step was added to the processing where

data were removed from comparisons when gradients exceeded 20 times the typical

gradient values. That is when gradients of θ or ev reach magnitudes of 0.06 units/meter,

the corresponding data were removed from the comparisons. This step was done

manually, in a similar manner to identification of precipitation in the NEXRAD data,

or missing scintillometer data. Figure 27 shows an example of filtering the ev gradient

from Albuquerque data. Red regions correspond to periods which will be removed

from comparison.
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Figure 27. NWP gradients, dev/dz in mb/m vs NEXRAD file number. The red regions

show an example of manually filtered NWP gradients, which were rejected as being

unrealistically low.

4.4 Radar Data Inconsistancies

Radar C2
n is derived from reflectivity measurements under the assumption that

reflected energy is due to scattering of index gradients created by turbulent eddies

within the inertial subrange. Reflections from any other sources is considered to

be noise and could artificially increase the radar C2
n, and mask turbulence-induced

Doppler-spectrum width. This section and the four following sections present an

investigation of the impact of possible clutter and noise sources.

The first source to consider is hydrometers. These could be clouds or precipitation

in the data. Rain events are typically easy to identify as they produce abrupt increases

in reflectivity with typical increases being 1-3 orders of magnitude. These events

can also be cross checked by comparing to ground observations, examining the radar
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volume coverage pattern, and the radar’s wide-area reflection pattern. In the presence

of hydrometer noise, C2
n measurements from the radar are considered unreliable.

Another source of noise is reflections off biological or man-made objects in the at-

mosphere. NEXRAD radar reflectivity is often used to study both insects, migratory

birds, and bats. [23, 31, 53] While these reflections are certainly present, it has long

been known that index gradients also contribute to the total scattering in a given vol-

ume of air. [26] Before proceeding, it is important to consider whether the NEXRAD

measurements used herein are trustworthy measurements of clear air turbulence, or if

clear-air reflectivity is dominated by ground clutter, insects, birds and aircraft. While

scattering cross sections for various biological and man-made structures are fairly well

known, volume scattering requires populations densities, which are more difficult to

determine. [16,23,26] Based on the findings here, we believe that the majority of the

data used includes some echoes from insects, birds, and ground reflections, but with

the exception of ground clutter, these signals do not dominate turbulence returns in

most of the data. To show this, we look to see how strongly mean radar reflectivity

follows population dynamics. We will show that radar reflectivity and C2
n do not

correlate well with known population dynamics, and that aircraft are not likely to be

present in most of the C2
n data sets. One exception is a cell phone path which is 2

km from a civilian airport.
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Figure 28. Image of Southwest Ohio showing the KILN radar and the location of the

measurement volume used in this study. The distance from the radar to the center of

the volume is 14.5km.

In Section 4.9 some of the geometric considerations pertaining to NEXRAD use

are presented. In order to investigate geometric effects and other noise sources, a

volumetric representation of C2
n in the PBL is used. NEXRAD radar can resolve C2

n

structure if measurements are taken at a radial distance of about 14km (Figure 28).

At this range, the width of radar bins is around 250m. Range gating is typically

250m as well, so the bins are approximately symmetric at this range (Figure 29).

This means that the first four elevations (nominally centered at 0.5o,1.5o,2.5o,and

3.5o) of clear-air VCP will fill a typical daytime PBL. Here measurements are taken

with an azimuthal range of 8o, a radial range of 3km, and elevation range of 4o. These

dimensions provide a 2× 3× 1km volume of C2
n measurements.
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Figure 29. Single volumetric C2
n measurement taken by the KILN radar on 27 Novem-

ber, 2013 at 0656 EST. Each sphere represents a measurement of C2
n (arbitrary scale)

with the color and sphere size being proportional to Log10(C2
n). The x-axis corresponds

to the bearing from North. The y-axis corresponds to radial distance from the radar,

and the z-axis corresponds to the vertical height of the beam. Terrain under the volume

includes Ceaser’s Creek state park and surrounding farmland.

This volumetric measurement technique was used to investigate clutter (addressed

in the next section), and the vertical structure of C2
n in the PBL. While each volume

provides valuable information by itself. It is also important to view how the volume

will evolve over time. In order to show vertical structure over time, the radial and

azimuthal dimensions are collapsed down for each volume in a time series. The bin

data are then re-plotted as C2
n vs height vs time. An example data set is presented

in Figure 31. Because of the beam elevation, the height of each bin increases with
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radius. This causes the higher elevation rays to show more vertical diversity than lower

elevations. A 2-D representation of collapsing measurements in the radial dimension

is shown in Figure 30.

Figure 30. Height above ground level (AGL) vs radial distance for four elevation angles

reported by KILN radar in clear-air mode. Each color represents a different elevation

angle. The outlined circles to the left are the resulting heights after collapsing mea-

surements down in the radial dimension as done when converting from the volumetric

C2
n measurements to the C2

n vs height vs time representation in Figures 31 and 32.

As is shown in this Figure 31, variation in C2
n measurements within the lowest

portion of the PBL is quite large. This large variation in the lowest elevation has

been seen in all plots of this type. Daytime C2
n generally decreases with height up

to about 800m then increases slightly near the top of the PBL. Nocturnal C2
n also

decrease with height. However, while the mean decreases with height, nocturnal C2
n

often shows a wide range of C2
n throughout the nocturnal boundary layer (up to

approximately 600m in Figure 32), while daytime PBL values tend to show a wide
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range only in the lowest elevation. The top of the nocturnal boundary layer can be

seen by the significant drop in C2
n. Additionally, the dusk quiescent period can be

seen in Figure 31 between 1937 and 2131. In Figure 32 there did not appear to be a

dusk quiescence, while in 33 the dawn and dusk quiescent periods are quite visible.

Ground observations at sunset showed that skies were clear and a steady wind of

about 6kn (3.1m/s) was present on 1 May, and on 21 July skies were also clear with

a variable 3kn (1.5m/s) wind. It may be that biological echoes (Section 4.6) are

artificially elevating clear air reflectivity in the May data. Conditions on 9 February

were also clear, with light winds.
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Figure 31. Vertical C2
n vs time from the KILN radar measured on 9-10 February, 2013

when migratory birds were not expected to be present. Each sphere corresponds to

one measurement from the volume described in Figure 29. The y-axis corresponds to

the local time (EST) when the measurement was taken. The x-axis position and sphere

color correspond to Log10(C2
n), and the vertical axis corresponds to the vertical height

of the center of each measurement. Local sunrise occurred at 0734 EST and sunset

occurred at 1805 EST.

Near the scintillometer path, there is not sufficient spatial resolution in the radar

data to estimate the vertical structure of C2
n. Attempts were made to scale radar C2

n

by fitting vertical scaling measured close to the radar to a quadratic polynomial, and

then applying this equation to scale radar C2
n from the center of the beam height to

the scintillometer path height. In a majority of cases, this decreased measurement

accuracy. Another attempt was made to create a climatological scaling. Quadratic
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fits of the vertical variation of C2
n were generated for all radar files within a month.

Then the mean of each parameter was calculated for the parameter ensemble from

each month. While these monthly parameter means did show seasonal dependence,

and variation with location, applying the scaling to measured data did not provide

any measurable improvement in agreement.

Figure 32. Vertical C2
n vs time from the KILN radar measured on 1-2 May 2013,

when migratory birds are expected to be present. Each sphere corresponds to one

measurement from the volume described in Figure 29. The y-axis corresponds to the

local time (EDT). The x-axis position and sphere color correspond to Log10(C2
n), and

the vertical axis corresponds to the vertical height of the center of each measurement.

Local sunset occurred at 2031 EDT.

Part of the reason that application of the scaling did not help for the data used

herein may be the distance of the scintillometer path from the radar. At the distances

used here, the radar integrates measurements over most of the boundary layer. Since

the lower PBL returns a wide spread of values, even though sensitivity may be 3 to

4dB below the maximum of the radar main beam gain, C2
n near the bottom of the
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boundary layer commonly shows values which range from those of the upper PBL

to about 3 orders of magnitude above values in the upper PBL. Based on (10), the

3 to 4dB drop in sensitivity of the beam at the scintillometer path height would

not overcome the large increase in C2
n seen at the bottom of the PBL. Assuming

that variation at the Dayton path is similar to variation seen in these volumetric

measurements, it would be expected that the radar C2
n is dominated by the larger C2

n

values in the lower PBL.

Figure 33. Vertical C2
n vs time from the KILN radar measured on 21-22 July 2014,

when birds are expected to be present. Each sphere corresponds to one measurement

from the volume described in Figure 29. The y-axis corresponds to the local time

(EDT). The x-axis position and sphere color correspond to Log10(C2
n), and the vertical

axis corresponds to the vertical height of the center of each measurement. Local sunset

occurred at 2057 EDT and sunrise occurred at 0626.

Another difference between the scintillometer and radar measurements is the

weighting of C2
n along the path. The scintillometer, like the radar, averages C2

n
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along the path, but the weighting function of the scintillometer is strongest in the

center. [62] On the other hand, the radar reflectivity is averaged evenly along the

path. Applying the scintillometer weighting to the radar path is possible, but has not

been investigated in this work.

The next section will discuss how hydrometer noise is handled. After this, Sec-

tion 4.6 will explore the impact of biological signals from birds and insects. Bats are

not investigated per se, but as they are of a similar size to birds, it is assumed that

their contribution will have a similar impact. Following this, Section 4.7 will discuss if

and where aircraft may have an impact. Finally, in Section 4.8 the impact of ground

clutter will be presented.

4.5 Precipitation

Precipitation affects turbulence, and all measurement methods. Fortunately, it’s

easy to see with the radar, and shows up as large increases in reflectivity, and pro-

portionally large increases in reflectivity based C2
n. It is assumed that detection of

turbulence echoes in the presence of precipitation is not possible for NEXRAD. For

this reason precipitation events are identified as in Figure 34 and data from these

periods are ignored in the RMSE and NBEC calculations.
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Figure 34. Radar C2
n vs radar file number (in chronological order). Portions of the

plot in blue indicate points that will be maintained. Portions of the plot in red with a

shaded background are identified as precipitation events, and will be omitted from the

results.

Before writing a program to allow the user to interactively select points to omit,

more straightforward approaches were attempted. Initially, a filter was put in place

based on the NEXRAD VCP. However, this was a poor choice, as there are many

periods when the radar is in a precipitation mode but the air in and around the

region of interest is clear. For example, Figure 35 shows the VCP in the middle plot

and the path-averaged reflectivity in the bottom plot (on a file by file basis). It is

apparent that during much of the 10 day period the KILN radar is in VCP 12, a

precipitation mode. However, precipitation is only evident in a few hours worth of

data. This makes sense when one considers the difference in area between the Dayton

scintillometer path, and the radar coverage area.
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Figure 35. Top: Completeness of NEXRAD data vs radar file number for data bins

along the Dayton Scintillometer path. Middle: Radar volume coverage pattern (VCP)

vs radar file number. Mode 12 is a precipitation mode, and mode 32 is a clear air

mode. Bottom: Path-averaged reflectivity (〈dBZ〉) vs radar file number. Note that

while the NEXRAD spend much of the 10-day period in precipitation mode, there are

only three precipitation events. The first occurs between files 700-750, the next from

files 1860-1890, and a small event can be seen from 2100-2010. Data are taken from

20-30 July, 2014.

4.6 Birds, Bats, and Bugs

NEXRAD radars have become a popular tool for studying bird populations [23,53].

For this work, it is worth understanding sources of reflected energy in radar echoes,

so that it can be determined when, if at all, turbulence-based echoes are present and

significant contributors. A first step in estimating the influence of birds, is to estimate

the number of birds required to reflect the amount of energy seen in radar returns.

Radar reflectivity is measured dBZ = 10log10(Z), which gives a measure of how many

drops of water are present in a given volume. Z has units of mm6/m3 which can be
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converted to η = σ/m3 the radar-cross-section per unit volume using [16]

η =
π5

λ4
|Kw|2 Z. (104)

Here λ = 0.107 m is the radar wavelength and Kw is the complex index of refraction

of water |Kw|2 ≈ 0.929285. Doviak lists the scattering cross section of small birds

to be σb = 10−3m2, and larger birds (sea gull) at σB = 10−2m2. To determine the

population density, say of small birds, ρb required to give an equivalent reflectivity,

ρb =
η

σb
=

π5

λ4σb
|Kw|2 Z. (105)

Taking the common log of both sides gives

log10 (ρb) = log10

(
π5|Kw|2

λ4σb

)
+ log10(Z) ≈ 9.3364 +

dBZ

10
. (106)

Because Z is in mm6/m3 while σb and λ are in m2 and m, respectively, Z must be

converted to m6/m3. This gives the population as a function of dBZ as

log10 (ρb) = 9.3364− 18 +
dBZ

10
. (107)

To find the number of birds per radar bin in the radar volumes like Figure 29, multiply

by the bin volume (Vbin ≈ 250 × 250 × 250 m3). This gives the number of birds nb

per bin,

log10

( nb
bin

)
≈ 9.37− 18 +

dBZ

10
+ log10(Vbin) =

dBZ

10
− 1.4698. (108)
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Figure 36. Histogram of the number of birds per bin required to give the refracted

energy recorded in the afternoon by the KILN NEXRAD radar on 21 July 2014 at

1632 EDT. The total number of birds is found by adding up the number of birds in all

the bins with at least 1 bird per bin.

Using this method, the required bird population per bin was calculated for an

afternoon and evening volume in July. Histograms of the resulting bird populations

are presented in Figures 36 and 37. Note that most bins have less than 1 bird per

bin in both plots. The maximum total number of birds present, Nbirds, (listed at the

top of the figure) is found by adding up the number of birds required to create the

received energy in each of the M bins. The number of birds is truncated the nearest

whole bird before summation,

Nbirds =
M∑
i=1

floor(nb,i). (109)
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The first notable fact is that the number of birds shown is not at all unreasonable for

mid July. The volume involved covers an area of about 9km2 up to a height of about

1.2km. This is actually an upper bound for the number of (small) birds, the actual

population is likely much smaller.

Assuming that this volume represents typical ornithological population, it can also

be used to estimate how much energy reflected from the whole volume is expected to

be due to birds. To do so, compare the total scattering cross section of the volume to

the scattering cross section of the maximum number of birds present, Nbirds. For the

data used in Figures 36 and 37, birds account for 75% and 47% of the total scattering

cross section, respectively. Attributing this much scattered energy to birds is likely

an overstatement, but puts a limit on the expected ornithological contribution.

131



www.manaraa.com

Figure 37. Histogram of the number of birds per bin required to give the refracted

energy recorded in the evening by the KILN NEXRAD radar on 21 July 2014 at 0343

EDT. The total number of birds is found by adding up the number of birds in all the

bins with at least 1 bird per bin.

To see how the maximum number of birds varies over time, the technique used

to create Figures 36 and 37 is carried out for 300 NEXRAD volumes, representing

approximately 24 hours. The resulting maximum possible number of birds, Nbirds,

and percent of the cross section which could have been attributed to Nbirds birds is

presented in Figure 38. The mean percent is about 37% of the total cross section.

This presents an upper bound on the typical portion of energy reflected in a volume
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which could be due to avian sources. Similar statistics from December (31%), and

May (42%) show that the maximum percent cross section attributable to birds is

consistently under 50% of the total scattered energy. Based on these values, birds

could be important in determining reflected energy, but they will not be able to mask

other scattering processes. The remainder of this section looks to see how well bird

populations correlate with returned energy.

Figure 38. Top: Maximum possible number of birds present, Nbirds, per NEXRAD

volume measurement. Bottom: Percent of total measured scattering cross-section of

the NEXRAD volume which would be due to Nbirds birds (solid blue line) and the mean

percent taken over all 300 volumes (red dashed line). Data are taken from 22 July at

0528 EDT until 23 July at 0514 EDT.

For birds, the monthly mean ornithological populations, and mean clear-air C2
n

values will be compared. As many population statistics are based on radar studies,
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a non-radar source was sought for comparison. Monthly aircraft bird strike rates

from the Smithsonian Institute were obtained for four different states, Ohio, New

Mexico, Kansas, and Tennessee. The bird strike rates (strikes per one million flights)

are assumed to be proportional to local bird populations and are compared to the

monthly average C2
n values (omitting precipitation events) from NWS NEXRADs in

those states, KILN, KABX (Albuquerque), KICT (Wichita), and KNQA (Memphis).

Bird strike numbers were divided by the number of commercial flights per month, to

give the number of strikes per one million flights. While the Smithsonian has been

collecting bird strike data since the 1960’s (reports are mandatory for all commercial

and military aircraft), only data from 2000-2014 were used here. [64, 73] Ohio and

New Mexico were chosen because they correspond to the scintillometer measurement

locations used in this research. Tennessee was chosen because Memphis is in a primary

migration path for many North American birds, and Kansas was chosen because

scintillometer and radar data were already available from the CASES 99 campaign.

It turned out that the site used in CASES 99 [58] was too far from the KICT radar

site to effectively measure turbulence, so those data are only used in this portion of

the research.
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Table 1. Pearson r and p correlation values for mean C2
n vs bird strike rates for four

states. Correlations are taken over all 12 months, and over 7 months from May to
October (when migratory birds are present [53]).

Ohio New Mexico Tennessee Kansas
12 Month r 0.660 0.721 0.870 0.904
12 Month p 0.020 0.008 2.4e-4 5.5e-5
7 Month r 0.305 -0.020 0.469 0.645
7 Month p 0.506 0.965 0.288 0.118

Figure 39. Mean C2
n vs bird strike rates (per 1M flights) for Ohio, New Mexico,

Tennessee, and Kansas. The larger colored markers are for the months April-October,

when migratory birds are generally present in these states. Smaller grey markers are

for winter months.

Figure 39 and Table 1 show the correlations from all four sites, and Figure 40 has

the annual rates and mean C2
n for Dayton and Albuquerque plotted together. Bird

strike rates and reflectivity are both low in the winter months for all sites. The 12
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month correlations between bird strike rates and radar reflectivity are high, but this

is expected as bird population, bird flight time, and radar reflectivity all respond

to the same seasonal stimulus. Low values from the radar are expected due to the

relatively dry air and reduced foliage reducing the clear-air and ground reflectivity

for the radar. Low values for birds are also expected due to fewer birds being present,

and flying less during colder months with shorter days. It would be expected, that

if birds are predominant contributors to clear air reflectivity, then the correlations

between reflectivity and bird strikes should be strongest when many birds are present.

However, from spring to fall, the correlation between the strike rates and average C2
n

does not show a meaningful positive correlation for any of the sites (Table 1) except

for Kansas. However, even in the Kansas data there is an 11% probability that 7

samples from a uniform distribution would correlate (or anti-correlate) at least as

well as 0.645. Furthermore, the mean C2
n values are highest in Kansas, where bird

strike rates are smallest, and while Ohio has the highest bird strike rates, its peak

C2
n is the second smallest. These correlation results show that bird populations do

not correlate with radar reflectivity. This lack of correlation shows that avian echoes

cannot be significant sources of scattered energy in the majority of NEXRAD dBZ

measurements.
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Figure 40. Mean bird strike rates (per 1M flights, solid blue) and mean C2
n (dashed

green) vs month for Ohio (Top) and New Mexico (Bottom).

Another commonly cited ornithological occurrence is that of the large increase

in radar reflectivity covering wide areas after sunset during the spring and fall [23,

53]. This bloom of reflectivity was also noted in summer and winter months (albeit

to a lesser degree from mid-November through February) in both the Dayton and

Albuquerque data (other data was not investigated). It is certainly expected that

nocturnal birds are contributing some of the reflected energy present in this bloom

effect. The nocturnal bloom is most pronounced during the spring and fall, when

migrating birds are present. However, presence of the bloom throughout the year

indicates that migrating birds are not solely responsible for these increased nocturnal

reflections.
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In the Ohio data, there appears to be a strong correlation to the the extent of

the night-time reflection and the local flora. The reflection rates stay strong from

mid-March until early November. While this period begins weeks before the majority

of migratory birds appear, and ends several weeks after they have passed, it does

correspond with the seasonal growth and loss of vegetation especially the leaves on

local deciduous trees.

In the Albuquerque data, the night-time radar reflectivity is also weaker in the

winter and shows a spatial correlation between vegetation reflected energy. Largely

arid regions in the north-west and those shadowed by land features often offer fewer

reflections (Figure 42). While the correlation to vegetation could also be caused by

fewer biological signatures being present (due to habitat), the depressed signals over

shadowed but habitable areas indicates that ground reflections are providing a signif-

icant portion of the returned energy. As will be shown in Section 4.8, investigations

of higher elevation sweeps support this hypothesis, as reflected energy from higher

elevations, but taken at the same height above ground level (by changing the radial

distance from the radar) systematically show weaker returns by about 15 to 20dBZ.

These greater returns from the lowest radar sweep are expected if ground clutter is a

significant source of reflected energy, but not if the increased reflections are primarily

avian, insect, or aircraft reflections.
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Figure 41. Left: Bird strikes per 1M flights vs month of the year. Data are taken from

2000-2014 for four different states. Right: Mean C2
n for four locations by month of the

year.

Ground reflections will also increase at night when increased refractive bending

lowers the radar main beam so that more of it intersects the ground, which is be-

lieved to be the dominant cause of the bloom effect currently being attributed to bird

migration. A final observation which indicates that avian echoes are less significant

than ground clutter is that the most significant change in mean C2
n from Figure 41

is a large drop that occurs from October to November in the Wichita, Dayton, and

Albuquerque data, and from November to December in the Memphis data. These

drops correspond to the loss of foliage in the fall for their respective sites. While these

drops in mean C2
n do coincide with the largest month to month drop in bird strikes

for Kansas and New Mexico, the C2
n drop occurs one month after the greatest drop

in bird strikes in those respective states (Figure 41).
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Figure 42. Radar reflectivity image from the KABX radar near Albuquerque, New

Mexico. Color indicates dBZ, red lines are interstate highways, and gold lines are state

borders. The area North and West of Albuquerque shows intermittent reflectivity

often seen over terrain with low back-scatter in the North East, or in the shadow of

land-forms (East and North). Image generated using NOAA WCT-Viewer.

Insects may also be important contributors to scattering within a clear-air volume.

Insect activity varies diurnally and seasonally with species. [7,55] The activity of flying

insects is sensitive to local climate with activity closely related to daily temperature

and winds. Insect seasonal populations also depend on climate and habitat [6, 7].

While no local seasonal insect population data could be found for comparison, the

clear-air reflectivity of the radar often follows a diurnal pattern of increase through-

out the day until near sunset when reflectivity drops off significantly before increasing
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again at night and falling off again at dawn. While insect activity generally increases

with temperature, it is also negatively affected by wind speed. Based on these be-

haviors, we would expect that flying insect activity would peak later in the day and

early evening when temperatures are still high, and winds are generally weaker. Then

the activity would slowly decrease through the evening as temperatures decrease, and

winds increase. This pattern does not match the typical reflectivity behavior, so it

is expected that insects are contributing scatterers, not dominant scatterers. [6,7,55]

Furthermore, as many airborne insects generally move with the wind, their signatures

are expected to help track the magnitude of the Doppler velocity spread, σv which is

required for the optical C2
n estimate method described below. So while they may arti-

ficially increase the measured C2
n, these scatterers may be beneficial to this technique

by more strongly weighting turbulence induced velocity spread over other influences

like aircraft, birds, and ground clutter.

Based on these findings it is assumed that biological contributions (here we are

not including foliage in with biological contributions), while present, do not dominate

returned energy values and can be ignored. While this will cause occasional errors,

especially during peak migratory seasons, these errors are accepted because it is not

feasible to manually search for avian and aircraft echos in the radar files (around 300

to 400 per day of data, with over 250 days represented here). In addition to the cost

of searching such a large volume of data, the beam size is relatively large at both

paths, making positive identification of these clutter sources uncertain.

4.7 Aircraft

If birds are significant contributors, then aircraft would also be significant noise

sources when present. At both scintillometer sites, the measurement volumes are in

the lowest elevation with a beamwidth of approximately 900m. While the sites for
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the PBL-structure volumes and cell phone data collection are near several civilian

airfields, the volumes for the turbulence paths are near the edges of class C airspace

for the Dayton and Albuquerque international airports, without being aligned with

runways. For these reasons, it is believed that aircraft will rarely be present in the

scintillometer measurement volume.

It may be that aircraft are present in radar data taken from the cell phone paths,

or for the PBL-structure volumes as there are several civilian airports nearby. The end

portion of the cell phone path is 1.86km from the Dayton-Wright Brothers Airport.

This may lead to aircraft echoes contaminating some of the retrieved comparison

radar data, but this is expected to be rare. This expectation is based on the fact that

the radar samples around 720 radial and 8 or more vertical rays in its 5-10 minute

cycle. During peak periods (weekends), the airport traffic rarely exceeds one flight

every 5 to 10 minutes. Considering that the portion of the approach which coincides

with bins used by the cell phone path encompasses only one ray (Figure 43), it is

quite unlikely to have aircraft noise in the radar return.
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Figure 43. Radar Image of the region where cell phone paths 1 and 2 were located. Bin

color indicates radar reflectivity. The vertical red diamond is the first receiver location.

the horizontal yellow diamond is the second receiver location. The cell phone tower’s

location is represented by a magenta triangle, and the nearby airport is indicated with

a yellow star, and strip with the approximate runway location. Bin radial spacing is

250m and azimuthal spacing is 0.5o, or about 350m.

4.8 Ground Clutter

Ground clutter appears to be present in much of the NEXRAD radar data. As the

ground clutter can affect both the reflectivity and Doppler information used here, it’s

important to attempt to understand how much of the energy received by the radar is

ground clutter.
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Figure 44. NEXRAD reflectivity in dBZ from the Albuquerque radar taken on 15

October 2014 at 1524 GMT. Reflectivity is overlaid above a topographic image to

show how reflectivity from the lowest elevation closely follows terrain features. Like all

NEXRAD data used here, these data have been processed to remove ground clutter.

Image generated using NOAA WCT-Viewer.

The radar data used here are Level II data [16,49] which have been preprocessed

to remove ground clutter. This is accomplished by two techniques, a zero Doppler

filter and ground clutter map. Of course, this does not remove all ground reflections

as surface features like trees, structures, bodies of water, vehicles can show non-zero

Doppler reflections, and the amount of reflected energy from the ground will change

based on variations in surface conditions and the degree to which the radar beam

is refracted down into the surface. Furthermore the finite bandwith of the system

will cause some of the zero-Doppler energy to spread into sidebands. Ground returns
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can be seen in that average reflectivity increases in regions where the radar beam

significantly intersects the ground, and increased Doppler spread along roads and in

urban areas where many moving, man-made structures are present. The ground maps

may also artificially reduce dBZ. In cases where dBZ is fairly constant over a large

area, ground features can sometimes appear as reduced reflectivity (Figure 45).

Figure 45. NEXRAD reflectivity in dBZ from the Wilmington, Ohio radar taken on

23 May 2013 at 0230 GMT. Reflectivity is overlaid above a topographic image to show

how the ground clutter map may reduce reflectivity. Note the elevated land feature

north of the radar shows reduced reflectivity compared to surrounding regions. This

area consistently shows a drop in dBZ, which may be due to the ground clutter map.

Image generated using NOAA WCT-Viewer.

As in Figure 44, ground clutter shows up as increased reflectivity in regions where

the radar beam significantly intersects the ground, and increased Doppler and Doppler

spread along roads and in urban areas where many moving, man-made structures

are present. Ground reflections will also increase at night when increased refractive
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bending lowers the radar main beam so that more of it intersects the ground. As

noted in Section 4.6, the most significant change in seasonal 〈C2
n〉 is a large drop that

occurs from October to November in the Wichita, Dayton, and Albuquerque data,

and from November to December in the Memphis data (Figure 41). These drops

correspond to the loss of foliage in the fall for their respective sites.

Figure 46. Doppler velocity from the lowest elevation of the Albuquerque, New Mexico

radar taken 15 October 2014 at 1524 UTC overlaid upon a USGS topographic colormap.

The red lines indicate US Interstate highways 40 and 25 intersecting at Albuquerque,

New Mexico, with Santa Fe in the upper right portion of the map. This image shows the

typical increased Doppler over roads and urban areas. Image generated using NOAA

WCT-Viewer.

Ground returns also show Doppler behavior which indicates echos from man-

made surface features. For example, when roads align so that traffic moves radially,
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there may be significantly increased Doppler reflections from traffic. For example, in

Figure 46, nearby highways, and urban areas show significantly increased Doppler.

Figure 47 shows that these effects are not universal, but also depend on land form.

Note that in the region North-East of the radar, there is a portion of highway I-71

which shows persistent elevated Doppler. However, the portion of the I-71 which is

west of the radar shows few signs of elevated Doppler. The land to the West slopes

away from the radar.

Figure 47. Doppler velocity from the lowest elevation of the KILN radar taken 7

September 2013 at various times. Left: overlaid upon a USGS topographic colormap.

The red lines indicates US Interstate highways between Cincinnati (lower left), Dayton

(upper left), and Columbus (upper right), Ohio. Note that all images show increased

Doppler on the portion of highway I-71 which has a grade facing toward the radar, and

is oriented radially with the radar. Right 4 plots show the region of I-71 where vehi-

cle reflections create persistent high-Doppler returns. Images generated using NOAA

WCT-Viewer.

Comparisons of radar measurements from similar altitudes, can also show the

magnitude of ground reflections. As the first elevation beam is centered at 0.5o, and

the second is typically around 1.5o, it is possible to look at samples from similar
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heights AGL, and see how they compare. For example, the lowest beam elevation

typically shows clear air returns which are about 15 to 20dBZ higher than other

elevations (Figure 48). This increase in dBZ at lower elevations is only greatest

between the lowest and second lowest elevation angles. The range of clear air returns

is also greatest in the lowest beam and decreases as the beam elevation increases.

From mid-spring to mid-fall, ranges of well over 100km are often seen for the lowest

elevation. In cases of strong refraction, the reflectivity pattern may seem to invert

compared to what would be expected based on terrain. That is, areas sloping toward

the radar may show reduced reflectivity. This may be due to the ground-clutter map

filter as shown in Figure 45.

Figure 48. NEXRAD reflectivity in dBZ from the Wilmington Ohio radar. Both images

are of data from the same file, 07 September 2013 at 1533 UTC. Left: Reflectivity taken

from the second elevation, 1.49o. Ranges are chosen so that the beam height is 0.6km

in the lower right hand corner and extends up to 1.6km at the upper left hand corner.

Right: Reflectivity from the lowest elevation, 0.48o. Beam height varies from 0.6km in

the lower right corner to 1.6km in the upper left corner. While the ranges are different,

the height represented is the same in both images. The lower elevation plot on the

right shows considerably higher dBZ because of ground clutter. Image generated using

NOAA WCT-Viewer.
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In 2014, an attempt was made to correct radar data based on the amount of

path bending predicted by NWP. The results of the initial study are presented in

Section 7.3. While these results were promising at the time, it turned out that the

correction technique did not extend well to new locations, and different times of the

year. These initial results are included in the Appendix as they illustrate the corre-

lation between the amount of radar beam refraction (how strongly the atmospheric

temperature, pressure, and vapor pressure gradients bend the beam down to the

Earth) and the amount of elevated reflectivity seen in NEXRAD C2
n vs scintillometer

C2
n. The hypothesis that ground clutter elevates NEXRAD C2

n also explains why

results do not transfer well to other locations and times of year. Ground reflections

depend on several factors including the land use, vegetation, structures, and motion

of surface features. For this reason, the amount of elevated C2
n measurement is ex-

pected to correlate with the amount of path bending. The path bending estimate

is not enough, in and of itself, to compensate for clutter. A further failing of this

method may be due to overstatement of the role of ground clutter. By attempting

to attribute the bulk of the additional energy to the ’beam height’ several other im-

portant processes are missed. The appendix has an explanation of the details of this

correction, which was dubbed the stability correction.

4.9 Geometric and Location Considerations

Ideally, the Numerical Weather Prediction (NWP), radar, cell phone, IDM, and

scintillometer data would represent the same location, at the same time. In practice

this is not possible. With respect to time, there is a significant uncertainty in when

the radar data were collected. Each NEXRAD radar file has a time-stamp, but it

takes several minutes to complete the sweep. So while the file time-stamp is used as

the time that the radar took its measurement, it will typically be several minutes after
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the true moment when the measurement was taken. Several minutes is a long time

scale for turbulence measurements as scintillometer C2
n can vary by over an order

of magnitude within this time. There is no correction for this timing issue in the

data presented here. NWP data are even more problematic in that their temporal

resolution is either 1 or 3 hours (depending on the forecast used). Regardless of the

interpolation method used to estimate parameter values between existing data points,

RMSE will be increased as higher frequency variation is not captured.

The lowest radar beam from the Wilmington, Ohio NEXRAD station (KILN)

typically extends from 0o (horizontal) to 1o in elevation. Using the four-thirds as-

sumption, and accounting for differences in elevation, it can be seen (Figure 20) that

the scintillometer path is just below the lowest beam. For this path, the error between

the flat Earth and four-thirds [16] approximations varies along the path from about

40m to 46m. The KILN beam is almost a kilometer wide when it passes above the

Dayton path, and the scintillometer path would be just under -3dB from the beam

max. The Albuquerque path is closer to the radar and at a similar height AGL, and

would typically fall within the 3dB bounds which defines the main lobe.

In addition to the temporal differences between NWP, radar, and scintillometer

data, there are significant spatial differences as well. The GFS data are spatially

interpolated to the center of the scintillometer path. RAP data are not interpolated,

rather, values from the nearest neighboring site are used. While the Albuquerque

scintillometer path is within the 1o radar beamwidth of the Albuquerque, New Mex-

ico NEXRAD station (KABX), the main lobe (3dB beamwidth) also intersects the

ground at this site. The Dayton scintillometer passes a few meters under the 1o KILN

beam, but is clear of the ground. The clear air returns from the NEXRADs are a

weighted integral of all scattering bodies within the radar volume [16]. Therefore,

even for simultaneous measurements, it is feasible that the radar would measure sig-
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nificantly different turbulence values than the scintillometer, even though the return

contains some energy scattered from the same eddies that the scintillometer measures.

As discussed in Section 4.1, C2
n can vary significantly over distances much less

than the differences between site locations, and much smaller than NEXRAD bins.

Geometric differences will thus be a limiting factor in how well measurements agree.

4.10 Cell Phone Uncertainty

Cell phone data are affected by both environmental processes which introduce

noise and system limitations. While little is offered here in terms of quantification

of noise, a description of expected processes is provided. First, the multipath en-

vironment will be presented, followed by a discussion of path bending and Fresnel

zone issues. Next, the impact of using uncooperative transmitters will be discussed.

Finally, the device limitations will be noted.

From an environmental standpoint, any processes which affects the RSSI, will ap-

pear as noise in the estimated C2
n. As described in Section 2.7, the RF propagation

environment typically allows for several different propagation paths which provide

a significant portion of the received signal. This is quite different from optical sys-

tems like scintillometers where it is usually safe to assume that all energy arrives via

the direct propagation path. While multipath fading may help improve cell phone

turbulence sensitivity, it also provides a significant noise source. Changes in both

dielectric and reflection structures in the environment, as well as small changes in

the device orientation and position can create significant RSSI variation. While the

devices were stationary most during data collection, the surrounding environment is

quite dynamic. It is expected that a portion of signal variation is due to non-turbulent

environmental processes which change the multipath propagation environment.

In addition to multipath effects, variation in the amount of obscuration of the

151



www.manaraa.com

Fresnel zones can affect total received power. If obscuration varies with time, then

RSSI effects could depend on the dynamics of which zones are obscured, and to what

degree. The first Fresnel zone is at least partially obscured at the second site. For

all sites, the cell phone path would be expected to follow the same four-thirds path

bending as the NEXRAD (which is at a similar wavelength). A question becomes

whether variation in the path bending via variation in dn/dz could be a significant

contributor to scintillation. For path 2, the path distance is 1.78km. The total

deflection from a straight path using the four-thirds path radius is about 7cm. As the

first Fresnel zone has an 8.6m radius, the number of blocked zones is not expected

to vary enough for fading from Fresnel zone blocking to be important. While longer

paths would see more deflection, the Fresnel zone also grows. So, up to the typical

5km range for cell towers, variation in path bending is not expected to be significant.

This is not to say that variation in dn/dz does not affect RSSI. Based on the

four-thirds assumption, the end of the path does deflect by nearly half a wavelength.

The coefficient of variation of d 〈n〉/dz is approximately 15%. Assuming that the

standard deviation of deflection is proportional to 15% of the total deflection, then

it would be expected that standard variation in beam deflection is less than λ/10.

Similar displacement of the device would typically produce minor fading. For this

particular path, variation in the vertical gradient of the index of refraction (including

hydrostatic and adiabatic variation) is not expected to be a significant noise source

when compared to multipath fading from other variations of scattering bodies in the

propagation environment. At 5km, the standard deviation of deflection could be over

7cm ≈ λ/2. At this range, typical variations in the vertical gradient of refraction

would be a significant noise source. An important question then becomes one of time

scale. What is the temporal structure function of path deflection? Slow variations can

be predicted by NWP, but this method is insufficient to determine the fast changes
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of d 〈n〉/dz. The IDM technique may help estimate these as the total deflection of

the hospital image can be used to determine the magnitude of path deflection.

In addition to fading from environmental processes, the cell phone transmitter

itself dynamically varies the signal power received [8, 75]. The power requirements

to maintain service can vary significantly between subscribers within a cell. A user

who is outdoors and fairly close to the tower with an unobstructed view, would be

able to accept a much lower broadcast signal power than users who are inside of

buildings, far from the tower, or in regions shadowed by terrain. There is only a finite

amount of signal power available to the cell phone transmitter and this signal power

must be shared by all users. In order to provide the best service to all users, the

cell phone base-station actively varies the portion of the total available power in each

user’s channel. As the transmitters are uncooperative, there is no way no normalize

RSSI to account for redistribution of power from the transmitter. Therefore, the

transmitter will induce an unknown amount of noise, based on user activity within

the cell, into cell phone C2
n measurements.

Like all instruments, the cell phone is limited in resolution, accuracy, and by

system noise. The system resolution is 1dB of RSSI and temporally limited to 1

second. Accuracy is not well documented for any of the sensors. The GPS accuracy

appears to be reasonably good with position correct to within several meters. RSSI

is not a calibrated measure (even though it is sometimes listed in dBm). Generally,

the phones typically measure from −90 to −60 dB, which is a reasonable value for

actual power in units of dBm. In practice, poor calibration does not matter for cell

phone operation as it’s the relative change in RSSI which is important. Using (95)

emphasizes relative variation instead of actual values. There will still be a constant

offset due to the accuracy of the spacing of the dB scale. However, the baselining

method will account for this systematic error along with other noise sources which
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are suitably white. The resolution is a limiting factor. Some of the high-frequency

variation is certainly not captured due to the low RSSI resolution. This may prevent

the cell phone from being sensitive to small C2
n variations. Quantification of this

limitation would be difficult without knowing more about the multipath environment,

the device, and cell base station induced C2
n noise.
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V. Results

Several methods for measuring and estimating C2
n have been compared. The ma-

jority of the results presented in this chapter will focus on using NWP and NEXRAD

to estimate C2
n as measured by a scintillometer. The next section will compare how

well the methods presented here estimate C2
n at both scintillometer sites. Following

this is a section describing the results of applying the Lamb-Oseen model to turbu-

lent eddy structure. The next section presents a short synopsis of the IDM technique

results, and the final section presents examples of Cell phone C2
n computed using the

techniques of Section 3.3.

An important fact to consider when comparing these results, is that most C2
n esti-

mation schemes contain at least one “coefficient of ignorance.” For all of the methods

based on Tatarskii’s formula, (23), this coefficient is often L0. In the following charts,

L0 could be manipulated to change some of the results. For instance, the RF N(T )

always has a lower RMSE than Ciddor N(T ) because ∂N/∂T is larger when the RF

equation is used. As the primary contributor to RMSE is underestimation of C2
n, it’s

natural that the RF N(T ) would, on average, be closer. However, as one increases L0

a point will be reached where most of the error is overestimation, and Ciddor N(T )

will be the better choice. For this reason, L0 was set to a fixed value, L0 = 100m,

at both locations. This value was chosen early on (when working with the standard

form of Tatarskii’s method), as it appeared to reduce the overall RMSE at each site.

This value is left fixed because there is not a general consensus as to the proper value

for L0, and it is not the focus of this work to explore the appropriate choice for L0.

In fact, many authors adjust this value (or another parameter which affects L0) in

order to show that their theory matches data. Choosing a value that works well for

the standard, temperature only, method unfairly weights results against the newer

methods proposed here. This will help to strengthen the significance of any results
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which favor these new methods.

Figure 49. Scintillometer resampling RMSE for the Dayton, Ohio (green KILN) and

Albuquerque, New Mexico (red KABX) sites by month of the year. RMSE is found

by downsampling to the NEXRAD and NWP data times using a sliding average, then

upsampling back to the scintillometer rates. The RMSE here shows what will be

considered the best possible RMSE. The weighted and unweighted 〈RMSE〉 over the

year is presented on the left end of the plot.

For much of the monthly data, there is not a meaningful ’error bar’ to show

significance. If all input measurement errors and uncertainty were known, it may

have been possible to find an approximation of the induced error. However, because

measurement error and NWP uncertainty are not available, error estimation is not

possible. Floating point error and error from incorrect assumptions about the eddy

structure (which there is nothing to compare with) are present, but operations are

typically well conditioned, and a better eddy structure model to compare against is

not known to the author.

As mentioned in Chapter IV, the scintillometer data are resampled to the NEXRAD

and NWP times, then these data are compared to the original scintillometer data us-
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ing the RMSE and NBEC metrics. Figure 49 shows these resampled RMSE values

along with the 12 month mean RMSE and the weighted mean RMSE. As expected,

the faster NEXRAD sampling produces less RMSE than the slower NWP sampling.

Because the partial derivatives ∂N/∂T , ∂N/∂P ′, and ∂N/∂e′v and the gradients

dθ/dz and dev/dz are all based on NWP, it is realistic to expect that the best pos-

sible RMSE performance will be similar to the 0.3 to 0.4 langleRMSE〉 shown for

resampling to the NWP rates.

5.1 NWP and NEXRAD vs Scintillometer

Before showing the results of the new methods presented here, an example of C2
n

taken from radar reflectivity using the standard method, (10) compared to scintil-

lometer measured C2
n is presented in Figure 50. The data used here are from the

Dayton path, and were taken in October of 2011. The similarity between NEXRAD

and scintillometer C2
n variation is apparent, especially in the first half of the plot (there

were clouds and rain present after the 11th). An atypical pattern of higher nocturnal

C2
n is present in both sets of data. The elevated nocturnal C2

n is more apparent in

the radar data, but its simultaneous occurrence in the scintillometer data (which are

not generally sensitive to birds) implies that the cause is (at least partially) due to a

process which is increasing C2
n. As the radar is much more sensitive to water vapor

processes than the scintillometer, the additional radar increase may indicate that the

increase involves the moisture gradient.
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Figure 50. C2
n vs time from the UD scintillometer (teal) and NEXRAD radar (green

dots) using the method of Doviak [16]. Dark bands indicate nighttime.

The impetus for development of the methods presented here comes from data

like those in Figure 50. The RMSE in Figure 50 is somewhere around 3-4, and the

methods used here typically reduce this RMSE significantly, with many of the months

showing an RMSE of 1.5 to 2 times the best case RMSE. In the results presented

here, reference will be made to the methods presented at the end of Section 2.1, which

are restated here for convenience.

1. RF N(T ) Using Tatarskii’s method (25), with dN/dT based on RF N in, (24),

dθ/dz obtained from NWP, and ignoring other terms. This is a common method

for estimating C2
n.

2. Ciddor N(T ) Using Tatarskii’s method (25), with dN/dT based on Ciddor’s

N in, (57), dθ/dz obtained from NWP, and ignoring other terms.

3. RF N(T, ev) Using Tatarskii’s method (25), with dN/dT and dN/de′v based

on the RF N in, (24), dθ/dz, and devdz obtained from NWP, and ignoring the

dP/dz term. This method is sometimes seen when estimating C2
n, especially in

the RF regime.
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4. Ciddor N(T, ev) Using Tatarskii’s method (25), with dN/dT and dN/de′v based

on Ciddor’s N in, (57), dθ/dz, and dev/dz obtained from NWP, and ignoring

the dP/dz term.

5. RF N(T, ev, P ) Using Tatarskii’s method (25), with dN/dT , dN/de′v, and

dN/dP ′ based on the RF N in, (24), dθ/dz, and dev/dz obtained from NWP,

and dP/dz determined from radar Doppler spectrum width, as described in

Section 2.4.

6. Ciddor N(T, ev, P ) Using Tatarskii’s method (25), with dN/dT , dN/de′v, and

dN/dP ′ based on Ciddor’s N in, (57), dθ/dz, and dev/dz obtained from NWP,

and dP/dz determined from radar Doppler spectrum width, as described in

Section 2.4.

7. RF N(T, ev) + WC(T, ev) Here the RF N(T, ev) estimate is corrected using the

wavelength correction (46) using RF N for the numerator partial derivatives,

and Ciddor’s N for the denominator, but with the pressure terms neglected.

8. RF N(T, ev, P ) + WC(T, ev, P ) Here the RF N(T, ev, P ) estimate is corrected

using the wavelength correction (46) using RF N for the numerator partial

derivatives, and Ciddor’s N for the denominator, and using all 3 terms.

The results of some of these methods are identical to numerical precision. Specif-

ically Ciddor N(T, ev) and RF N(T, ev) + WC(T, ev) provide identical results as do

the Ciddor N(T, ev, P ) and RF N(T, ev, P )+WC(T, ev, P ) methods. In addition, the

baselined versions of these method pairs are equivalent. While all of these methods

are presented in the tabular RMSE, and NBEC plots, other portions of this section

will omit redundant results.

Not all months had the same availability of data. The amount of useful compar-

isons depends on the availability of scintillometer data and favorable weather con-
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ditions for the NEXRAD and NWP data. The total number of points are counted

based on the number of NEXRAD files which are used in the comparison. After

rejecting files with precipitation, no corresponding scintillometer data, or excessive

NWP gradients, the remaining points are included in the RMSE and NBEC results.

In some cases, mean RMSE (〈RMSE〉), are reported in addition to the RMSE for

each month. These means are found by averaging over the 12 month period at each

location. The unweighted mean is found from

〈x〉 =
1

12

12∑
i=1

xi. (110)

In addition to the unweighted mean, a mean is also calculated with weights based on

the number of points in each month per

〈x〉 =
1

N

12∑
i=1

nixi. (111)

Here ni is the number of points in the ith month and N is the total number of points.

Both of means are reported because the each add a different emphasis based on

climate and time of the year. As data availability are partially dependent on weather

conditions, the weighted average will emphasize performance in seasons when more

data are available, while the unweighted mean emphasizes year round performance.

The number of point shown in Figure 51 indicates that the weighted mean emphasize

data from late Summer and Spring.
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Figure 51. Monthly weights for the Albuquerque and Dayton data sets. Each weight

is found from ni/N where ni is the number of data points used for comparisons in the

ith month, and N is the total number of points used from each location.

As shown in Figures 52 and 53, the temperature-only estimates, RF N(T ) and

Ciddor N(T ) performed similarly at both sites, with RF N(T ) being slightly better

in all months except for November, December and March at the Dayton site. The

August data from Albuquerque (Figure 52) were taken over a period which was often

overcast with several thunderstorms and rainy periods. It is not known if this is the

reason for significantly higher error in the August estimates.
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Figure 52. Mean RMSE between estimated C2
n and scintillometer measured C2

n vs

month of the year for the Albuquerque, New Mexico site. Both the Ciddor based

results (dashed lines) and RF results (solid lines) are pictured. Results using the

wavelength correction are identical to their corresponding Ciddor based results. That

is, the RMSE of RF N(T,Ev) + WC(T, ev) is identical to Ciddor N(T,Ev), RF N(T,Ev, P )

+ WC(T, ev, P ) is identical to Ciddor N(T,Ev, P ), and the baselined versions BL RF

N(T,Ev, P ) + WC(T, ev, P ) is identical to BL Ciddor N(T,Ev, P ). In this case, dP/dz was

derived using a fixed eddy size of 0.67m for the scintillometer eddy size.

Figures 52 and 53 show that adding vapor pressure and pressure terms generally

reduce the RMSE. While improvement from adding pressure is noticeable at the Albu-

querque site (Figure 52), it is less pronounced at the Dayton site (Figures 53 and 54).

Figure 54 shows the results at the Dayton site without the temperature only methods,

so that the effects of adding pressure are more apparent. The improvement in RMSE

at the Albuquerque site from inclusion of ev (Figure 55) may be less pronounced

because Albuquerque is a significantly drier climate than Dayton. By comparing C2
n

vs time from some of these months, it’s possible to see when the additional vapor

pressure and pressure terms become important to calculating C2
n.
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Figure 53. Mean RMSE between estimated C2
n and scintillometer measured C2

n vs

month of the year for the Dayton, Ohio site. Both the Ciddor based results (dashed

lines) and RF results (solid lines) are pictured. Results using the wavelength correction

are identical to their corresponding Ciddor based results. That is, the RMSE of RF

N(T,Ev) + WC(T, ev) is identical to Ciddor N(T,Ev), RF N(T,Ev, P ) + WC(T, ev, P )

is identical to Ciddor N(T,Ev, P ), and the baselined versions BL RF N(T,Ev, P ) +

WC(T, ev, P ) is identical to BL Ciddor N(T,Ev, P ). In this case, dP/dz was derived using

a fixed eddy size of 1.0m for the scintillometer eddy size.

Figure 58 shows scintillometer C2
n along with six methods for estimating C2

n. As

is typical at both locations, the RF N estimates (in the left column) becomes pro-

gressively worse but the Ciddor N estimates become progressively better as ev and P

terms are added. Adding the ev term reduced the RMSE when compared to temper-

ature only methods in all 24 months of data. However, the pressure correction only

improved estimates in 19 of the 24 months.
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Figure 54. Data from Figure 53, without the temperature only methods. Mean RMSE

between estimated C2
n and scintillometer measured C2

n vs month of the year for the

Dayton, Ohio site. Both the Ciddor based results (dashed lines) and RF results (solid

lines) are pictured. Results using the wavelength correction are identical to their

corresponding Ciddor based results. That is, the RMSE of RF N(T,Ev) + WC(T, ev) is

identical to Ciddor N(T,Ev) and RF N(T,Ev, P ) + WC(T, ev, P ) is identical to Ciddor

N(T,Ev, P ). In this case, dP/dz was derived using a fixed eddy size of 1.0 m for the

scintillometer eddy size.

At the Albuquerque site, the pressure correction degraded the RMSE in Novem-

ber, and December. The pressure correction also slightly degraded the Novem-

ber and December RMSE at the Dayton site. Figure 55 shows the difference in

RMSE for estimated C2
n generated using Ciddor N(T, ev) versus Ciddor N(T,Ev, P ),

Improvement = RMSET,ev − RMSET,ev ,P . It is apparent that pressure plays a

greater role in both improving and degrading the RMSE in the Albuquerque data.

The cause of greater improvement in the Albuquerque data is unclear. It could be

due to differences in the two NWP sources, or in the site itself.

In comparisons from both locations, periods of significant persistent C2
n overesti-
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mation by the NWP based estimates were noted. The overestimation in these periods

appears to be due to unrealistically large temperature and vapor pressure gradient

magnitudes. While both sites show similar mean gradients there is much greater vari-

ation in the RAP gradients than in the GFS gradients. Typically there are several

periods in each month when the gradients become unrealistically large. Data are not

compared for times, i, when the forecasts provide gradients, dφ/dz whose magnitude

is more than an order of magnitude greater than the mean gradient magnitude,

∣∣∣∣dφidz
∣∣∣∣ > 20×

〈∣∣∣∣dφdz
∣∣∣∣〉 . (112)

If unrealistically low dθ/dz and dev/dz at the Albuquerque site are more common,

then the pressure term would provide a more significant correction. In cases where

the gradients are too large, the pressure term will tend to increase error. Without an

additional source of gradient data, it is not possible to be certain if the NWP data

(or the interpolation and gradient estimation schemes) are at fault, or if there is a

site specific reason (possibly humidity) for increased effect of the pressure term on

C2
n RMSE at the Albuquerque site. Comparisons with RAOB data were performed

at both sites. GFS gradients compared well with RAOB measurements, but RAP

gradients did not. RAOB data were used to scale RAP gradients so that they matched

RAOB data.
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Figure 55. Improvement (reduction) in RMSE from adding the pressure term by month

for the Albuquerque and Dayton Data sets.

Considering the improvement from using either Ciddor N(T, ev) or RF N(T, ev)

+ WC(T, ev), the 〈RMSE〉 decreases by between 0.217 and 0.629 from estimates

using temperature alone (Table 2). In linear space, this corresponds to 39% and 77%

reduction in RMSE.

Compared to the Ciddor N(T, ev) method, including the P term adds additional,

but less pronounced reduction in RMSE. In Albuquerque, the pressure correction re-

duced the Ciddor N(T, ev) RMSE by 0.10, or 21% in linear space. In Dayton, the

pressure difference reduced RMSE by 0.0147, corresponding to only a 3% reduction

in linear RMSE. While the Albuquerque improvement seems significant, the improve-

ment at the Dayton site appears to be nominal.

When working with the IDM technique, it was discovered that the estimation of

KH/KM used in Tatarskii’s method provided unrealistically low values under certain

conditions. While this will be explored more in Section 5.3, the corrective factor found

there was applied to a few of the months of the KILN data; July, August, September
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Figure 56. Dayton (KILN) RMSE by month for 8 different C2
n estimation methods.

The months of July, August, September, and November had their Bulk-Richardson
number Ri modified by R′i = 3

√
Ri before calculation of KH/KM via the Kondo equation,

(102).

and November. While there was little change in the November results, the July-

September results were improved substantially (compare Figure 53 and Figure 56).
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Figure 57. Eddy size (in meters) which gave the best improvement in RMSE when going

from Ciddor N(T, ev) to Ciddor N(T, ev, P ) vs time of the year for both the Albuquerque,

New Mexico (KABX) and Dayton, Ohio (KILN) sites.

As part of the pressure correction, the proper eddy size must be selected. At one

stage, the eddy size was allowed to vary, and the size that produced the lowest RMSE

was used. The sizes from each month are presented in Figure 57. It can be seen

that the months which had unusually small KH/KM , July-September at the Dayton

(KILN) site, also benefited from larger eddy sizes. With these sizes, the improvement

by adding the pressure term was 0.0512 RMSE or 12.5% at the Dayton site and 0.135

RMSE or 36.6% at the Albuquerque (KILN) site. In the remainder of the results,

the Albuquerque eddy size was fixed at 0.67m, and the Dayton eddy size was fixed

at 1.0m. The eddy size directly impacts the magnitude of the pressure term. A

more effective method for determining the eddy size may yield better results. One

approach may be to use the local air viscosity and density to find an eddy size which

produces an appropriately sized scatterer. In the case of the scintillometer, 3cm. In

addition to eddy size, Doppler spectrum width, which is used to determine ε, has a
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large impact on the magnitude of the pressure term. Doppler spectrum width data

from NEXRAD vary over several orders of magnitude, and are often incomplete. A

method which can more accurately estimate ε, combined with a proper selection of

the eddy size may show more improvement in RMSE than is shown here.

Figure 58. Plots show C2
n vs time (day and hour) with axis ticks at local sunrise and

sunset. Blue dots are C2
n values measured by scintillometer at the Albuquerque site

and interpolated to the radar file measurement times. Green dots are estimates of C2
n

created using the RF N in the left column and Ciddor’s N equation in the right column.
The top row estimates C2

n using potential temperature gradients alone. The middle row
adds potential vapor pressure gradients to the estimation, and the bottom row adds
the non-hydrostatic pressure gradients to the estimation. Blue dots are scintillometer
based C2

n measurements. Data are from 12-20 April 2013.

While the inclusion of the pressure term helps some, the greater benefit can be

seen from using the Ciddor N to estimate C2
n instead of RF N. This is an important

result as most authors are still using the RF N, and tweaking coefficients to make

it work with visible/IR data. The comparisons here show that Ciddor N provides

significantly better fidelity for predicting C2
n of an 880nm scintillometer than RF N .

The inclusion of ev alone does much to improve RMSE and the range of conditions
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Table 2. RMSE vs method for data taken from each site. The Dayton and Albuquerque
data each include data from all 12 months. The Dayton data uses 15,571 datum points,
and the Albuquerque data uses 12,357 datum points.

Method Dayton Albuquerque
Re-Sample
Scintillometer Data

0.2889 0.4119

RF N(T ) 1.558 0.9989

Ciddor N(T ) 1.649 1.057

RF N(T, ev) 1.335 1.241

Ciddor N(T, ev) &
RF N(T, ev) + WC(T, ev)

0.9295 0.7817

RF N(T, ev, P ) 1.380 2.123

Ciddor N(T, ev, P ) &
RF N(T, ev, P ) +
WC(T, ev, P )

0.9147 0.6786

BL Ciddor N(T, ev, P ) &
BL RF N(T, ev, P ) +
WC(T, ev, P )

0.9155 0.7106

under which Tatarskii’s method is applicable. Before, it may have been necessary to

omit data when dT/dz drops below a certain threshold, but using Ciddor’s equation

with ev and P terms allows for Tatarskii’s method continue to provide good estimates.

The RMSE metric shows that Ciddor N(T, ev, P ) provides the best possible esti-

mate, on average. There are some months when Ciddor N(T, ev) and the baselined

corrections do better, but the lowest 〈RMSE〉, averaged over all months is Ciddor

N(T, ev, P ) in both locations. While this method provides the lowest RMSE, on

average it is does not necessarily provide the best estimate most often.

The NBEC test adds a criteria which is different from the RMSE test. Th RMSE

is independent of the other tests involved, but the NBEC is highly dependent on

which other tests are involved. The NBEC results are presented based on two forms

of the NBEC comparison. Figures 59 and 60 both show the results of comparing the

Ciddor N(T, ev, P ) method to all other methods. The Ciddor N(T, ev, P ) method was
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chosen as it was one of the best performing methods based on the RMSE metric. In

these charts the NBEC is computed, then 50% is subtracted from the result. Because

these are two-test comparisons, if the Ciddor N(T, ev, P ) method provides a closer

estimate about 50% of the time, then it is of similar goodness as the method it is being

compared against and will show a value near zero on the chart. Increasingly positive

NBEC−50 indicates that Ciddor N(T, ev, P ) is the increasingly better method, and

the more negative the result, shows that Ciddor N(T, ev, P ) is a proportionally worse

method. When two methods are the same within ±1% the result bar is omitted from

the chart.

In both Figures 59 and 60, it is interesting that the Ciddor N(T, ev) method

often has a better NBEC than Ciddor N(T, ev, P ), even though its RMSE was gen-

erally worse. At both sites the Ciddor N(T, ev) had a better 2-method NBEC in

7 months. The Dayton site showed that Ciddor N(T, ev) was better than Ciddor

N(T, ev, P ) in March-June, then again in October-December. Albuquerque showed

Ciddor N(T, ev) performing better than Ciddor N(T, ev, P ) in February, May, June

and September-December. Ciddor N(T ) also outperformed Ciddor N(T, ev, P ) at

times. Ciddor N(T ) had a better NBEC than Ciddor N(T, ev, P ) in 5 months at

Dayton (March, May, and November-December) and in 6 months at Albuquerque

(May, June, and September-December). However, the Ciddor N(T, ev, P ) performed

better than RF N(T ) in all months expect June at the Albuquerque site, where RF

N(T ) was marginally better. Figure 61 from the Dayton site, shows that RF N(T )

is better than Ciddor N(T ) in only 7 months, even though its RMSE is better than

that of Ciddor N(T ) in 10 of the months.

Similarities in performance of the methods becomes more apparent when NBEC−50

scores are averaged over all 12 months. Figures 62 and 63 show these averages with

equal weighting in the average given to each month. Error bars indicate the sample
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standard deviation, and a method will be considered significantly bettor or worse,

when the error bars are entirely above or below the NBEC = 0 line, respectively.

While there are some differences in the two locations, it can be seen that the Ciddor

methods outperform the RF methods when additional variables are added in, but

RF N(T ) does perform better than Ciddor N(T ). When comparing the various

Ciddor or RF + WC techniques which use T and ev to those which include T , ev,

and P or the baselining techniques, there does not appear to be a significant improve-

ment between the different methods. For most methods, use of the Pythagorean sum

as in (29) appears to do significantly better than the Naive form, (25) or the form

which uses the maximum variation, (28).

In addition to the 2-method NBEC, a 6-method NBEC was performed which

included both temperature only methods, RF N(T ) and Ciddor N(T ), non baselined

methods Ciddor N(T, ev) and Ciddor N(T, ev, P ), and baselined Ciddor N(T, ev, P )

and baselined RF N(T, ev) + WC(T, ev). Recall that baselined BL RF N(T, ev) +

WC(T, ev) and baselined Ciddor N(T, ev) are completely equivalent in terms of their

results.

It is apparent that although Ciddor N(T ) had the worst RMSE scores, it ends up

having the best NBEC scores. Based on this and the RMSE results, it appears that

Ciddor N(T ) does well for a good portion of the estimates, but when it does miss,

it tends to miss by a lot. While Ciddor N(T, ev) did better in the 2-method NBEC

comparisons, it is shown to be less ideal when compared to several methods at once.

Based on the averages on the right side of the figures, it appears that NBEC scores

for Ciddor N(T, ev, P ) and the baselined Ciddor N(T, ev, P ) are nearly identical, and

overlap the better performing methods. This is a very important result to consider

when looking at methods with combined inputs. If the temperature gradients are

overestimated, for any reason, even if the other gradient terms are correct, they will
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Figure 64. Albuquerque (KABX) 6-Method Normalized Best Error Count for each
month of the year, the 12-month mean, and 12-month mean weighted by number of
data points in each month. Error bars indicate the 12-month sample standard deviation.

appear to be incorrect in these metrics because they will tend to push the result

further from its true value. It may be that the Ciddor N(T, ev) tends to do well

because it tends to slightly overestimate the scintillometer C2
n, so added pressure

terms will only serve to degrade the term. However, if the overestimation is typically

slight, then reducing L0 may end up more strongly favoring Ciddor N(T, ev, P )

As alluded to before, the NBEC can be affected by choice of L0. In a similar way,

it is also affected by shortcomings of NWP used here for the Tatarskii method. It is

not uncommon for this method to show strong over-estimation or underestimation of

C2
n during extended periods. As the ev and P terms increase the C2

n estimate their

NBEC score will be affected by any tendency of Tatarskii’s method to underestimate

or overestimate C2
n.

Over-estimation was noted in the Noise section (Figure 26), and this sort of pattern

is also noted in other data. For example Figure 66 shows a portion of the Dayton data

from several days in March. In this data, there are periods where the temperature
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Figure 65. Dayton (KILN) 6-Method Normalized Best Error Count for each month of
the year, the 12-month mean, and 12-month mean weighted by number of data points
in each month. Error bars indicate the 12-month sample standard deviation.

method overestimates C2
n. While the ev and P terms do little to modify C2

n in these

periods, because they increase C2
n, they will have degraded NBEC scores. Their

RMSE improvement is not significantly effected, because the RMSE at these points

is nearly the same as the temperature-only method RMSE. These elevated estimates

appear to be driven by large values of dθ/dz taken from NWP data. It is supposed

that the NWP data may not be reliable at these times. Because no method for

identifying when these NWP are unreliable is presented, these data are left in the

results. The drops in C2
n when dθ/dz goes to zero are significantly improved by

adding the additional terms, which is why the RMSE scores still show that the ev

and P terms are helpful.
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Figure 66. C2
n vs time (axis ticks indicate sunrise and sunset) from March 2013. Blue

dots indicate scintillometer data from the Dayton site, and green dots are estimates

created using NEXRAD and NWP data and the Ciddor N(T ) (top), Ciddor N(T, ev)

(middle), and Ciddor N(T, ev, P ) (bottom) methods.

Under-estimation due to periods when dθ/dz goes to zero is an expected conse-

quence of the flawed assumption that ev ad P are safely ignored in determining C2
n for

visible to IR systems. However, there are periods when strong underestimation arises,

and is not improved by adding the ev and P terms. This is noted in the scintillometer,

and IDM technique data. It appears that the ratio KH/KM used in (25),

C2
n = a2

(
KH

KM

)
L

4
3
0

(
∂n

∂T

dθ

dz
+
∂n

∂P

dP

dz
+
∂n

∂ev

dev
dz

)2

, (113)

which is determined using the Kondo equation, (102) from the Bulk-Richardson num-

ber, Ri [38,48] can become quite small when NWP predicted wind gradients dU/dz,

and dV /dz become small. Small gradients force Ri to become quite large, and in

turn decrease KH/KM . It is apparent from (113) that regardless of which terms of
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the dn
dz
≈ ∂n

∂T
dθ
dz

+ ∂n
∂P ′

dP
dz

+ ∂n
∂e′v

dev
dz

expansion are maintained, a small KH/KM value can

force the entire C2
n estimate to be small. An ad-hoc fix of taking the cube root of

the NWP-based Richardson number, R′i = 3
√
Ri , before using the Kondo equation to

compute KH/KM showed much better agreement in both the July-September Day-

ton scintillometer and IDM comparisons. This correction is only suggests that the

KH/KM estimates from these data may be incorrect. The cube root modification is

not used in the actual RMSE and NBEC data, but it does suggest that RMSE results

may be improved by including more accurate gradients.

5.2 Non-Hydrostatic Pressure Gradient Results

This section presents the eddy structure, pressure gradients, and numerical results

of applying the Lamb-Oseen model as described in Section 2.4. Based on the shape of

the pressure gradient structure (Figure 67) the majority of pressure based scattering

is confined to a small and narrow region near the center of the eddy. Depending on the

kinematic viscosity, ν, and the energy dissipation rate, ε, an eddy with a size between

2m to 10m will provide a pressure gradient peak at a radius of 2.5cm, corresponding

to a scattering body size of approximately 5cm, the dominant Bragg scattering size

for NEXRAD radar.
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Figure 67. Radial eddy structure derived from the Lamb−Oseen vortex model for a 4m

eddy with ε = 0.008(m2s−3). The solid blue line and left axis show tangential velocity

vs r. The dashed green line and right axis show the pressure gradient vs r. Note that

the peak of the pressure gradient curve is at a radius of approximately 1/4 the radar

wavelength.

The magnitude of the peak of the pressure gradient depends strongly on ε. Values

of ε are calculated from the Doppler spectrum width, σv, measured by the NEXRAD

radar (Figure 68). [16] The relationship between σv and ε depends on the geometry

of the radar bin. The width of the radar beam increases with radial distance, but

the radial spacing is constant. Thus, the radar bins appear long and skinny near the

radar, and like a wide but thin shell far from the radar. Doviak and Zrnik [16] give

ε(σv) based on a first order expansion of the hyper geometric function with respect
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to the aspect ratio r2σ2
θ/σ

2
r ,

ε ≈
[

σ3
v

σr(1.35a)3/5

](
11

15
+

14

15

r2σ2
θ

σ2
r

)−3/2

, (114)

where σr is the range gate spacing of the radar, σθ is the radar beamwidth, and

a is a universal constant as in (21). In the data used here, the value of ε varies

from 10−5 < ε < 10, leading to pressure gradients which may vary over 5 orders of

magnitude. The value dP/dz = 0.03 mb/m in Table 3 is common for eddies between

5m to 10m and an ε of about 0.01, which also create scattering widths of around

5cm.

Figure 68. Wind shear vs time (day and time listed) from April 2013 at the Albu-

querque site. The green line shows NWP (RAP) based wind shear and the blue line

shows NEXRAD Doppler-Spectrum width shear. Portions of the NEXRAD wind shear

which do not have measurable data are filled in with NWP shear (the smooth sections

of the blue curve).
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Table 3. Partial derivatives of refractivity and vertical gradients taken from Dayton,
Ohio and Albuquerque, New Mexico. Values are number-of-point-weighted means of
the absolute values of the respective quantities. All pressures are in millibars, potential
temperatures in Kelvin, potential vapor pressures in millibars, and distances are in
millimeters unless otherwise noted.

λ ∂N/∂P
∂N/∂T

∂N/∂ev
dP/dz

dθ/dz
dev/dz

Dayton
10.7 cm 0.2430 1.231 4.039 24.86 5.370 4.736
880 nm 0.2776 0.9443 0.5035 2.813 5.370 4.736

Albuquerque
10.7 cm 0.2716 0.9368 4.601 43.41 3.314 3.147
880 nm 0.2790 0.7625 0.4934 2.775 3.314 3.147

NEXRAD spectrum width are often incomplete. In order to provide continuous

data, NWP shear are used to fill in the missing data as shown in Figure 68. As

NEXRAD spectrum width are typically much larger than NWP shear, the NWP

shear is adjusted so that its mean matches the mean of the NEXRAD shear. Even

though the NEXRAD shear is assumed to be the correct magnitude, it is not known

which data source should actually be trusted more when estimating shear.

Calculation of circulation for the Lamb-Oseen model, Γ, requires numerical in-

tegration of the denominator in (36). Because this integration is performed several

thousand times for each data set, a faster method was sought as described is Sec-

tion 2.4. The difference between the estimated circulation and the circulation cal-

culated via numerical integration is presented in Figure 69. The dependence on ε

is negligible for values encountered in this work. The error as a function of l stays

under 2% throughout the inertial subrange, which is considered acceptable as it is

significantly less than other error sources in this work.
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Figure 69. Relative Error between Γ(l, ε) calculated using (36) and Γ(l, ε) from the

approximation (37) and (38) vs eddy size, l, and dissipation, ε. All axis are common

logarithm.

The improvement in RMSE from adding pressure terms varies from negligible to

moderate. The limitations from other noise and error sources make it difficult to

determine the significance of the pressure results. If the eddy velocity and pressure

structures do bear some resemblance to the models presented here, then there will

be little change for conclusions in most previous work with the exception of methods

which relate eddy scattering size to eddy energy. This includes the development of

Doviak which gives ε from spectrum width. Doviak assumes that 5cm eddies are

the primary scatterers contributing to the spectral width. However, the Lamb-Oseen

model predicts that they are in fact several meter eddies which have 5cm scattering

185



www.manaraa.com

cores. This could indicate that his development, used here, is over-estimating eddy

energy.

5.3 Image Differential Motion

The results of the IDM method are to be presented at the 2016 IEEE Aerospace

Conference. The IDM data currently comprises only one day, and the technique

does not work well during day to night transitions. The path is about 10km further

from the radar than the Albuquerque or Dayton scintillometer sites. Because of this

increased distance, the radar data appeared to be more sparse on this day (Figure 25)

which made path weighting more difficult. The IDM weighting is not uniform, so

incomplete data create errors as discussed in Section 4.9. Additionally, the original

estimates (center plot in Figure 70) severely underestimated C2
n at the beginning and

end of the day. Investigation of this discrepancy led to the realization that the Bulk-

Richardson number, Ri, which is used to calculate the ratio KH/KM used in (25) was

quite small due to very low vertical wind gradients. Based on an examination of the

correlation between the Ri and the differences between IDM based C2
n and estimated

C2
n a cube root modification,

R′i = 3
√
Ri, (115)

was applied to the original Ri values. While ad-hoc, this correction greatly improved

agreement (bottom plot in Figure 70).
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Figure 70. C2
n vs time from three different methods. The IDM technique (top), BL

Ciddor N(T,Ev, P ) estimates with IDM path weighting applied (middle), and BL Ciddor

N(T,Ev, P ) estimates where NWP-based Ri is modified by the cube-root method, R′i =

3
√
Ri. All data are taken from 23 July 2014 at the AFIT to Good Samaritan Hospital

path. Figures taken from [4].
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In addition to providing comparisons, this data provided an example of how

baselining can be important to estimation of C2
n. The techniques which use NWP

do not provide sub-path resolution, so the path weighting cannot be applied. While

the NWP method which uses spectral width to estimate wind shear could be used,

the spectral width data tend to be much more sparse than reflectivity data. Even

though the baselining does not always show significant improvement over the non-

baselined methods, its utility becomes apparent in cases like this, where it can provide

significantly higher temporal and spatial resolution.

5.4 Cell Phone and Radar

Cell phone data have been collected from three different locations, and several

years are available for processing. Using the scintillation calculation method presented

in Section 3.3, C2
n values are found which are similar in magnitude to radar reflectivity

based C2
n. Figure 71 shows C2

n calculated from a 100 point sliding mean. The raw

cell phone data are depicted in Figure 73.
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Figure 71. C2
n vs time calculated based on 6 days of power scintillation in cell phone

voice and data channels. Data were taken from the second cell phone data path,

operating on the Sprintr network. Data C2
n are multiplied by 100 in order to provide

separation on the plot.

The magnitude of C2
n seen in Figure 72 is closer to NEXRAD C2

n than those

found in [8]. In fact, they are the same magnitude as the RF N(T, ev, P ) estimates

shown in Figures 58 and 74. Unlike the lower resolution NEXRAD data, the temporal

resolution of cell phone C2
n is similar to that of a scintillometer. The data used in

Figure 71 covers 494,999 seconds with 108,588 points, which gives an average interval

of about 4.5s. This particular path is 750m in length, which is slightly coarser spatial

resolution than the NEXRAD provides. These data values have not been compared

to NEXRAD data.
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Figure 72. C2
n vs time calculated based on 5 days of scintillation in cell phone voice

and data power. Data were taken from the third cell phone path, operating on the

Verizon
r

network. Data C2
n are multiplied by 100 in order to provide separation on the

plot.

Data from the third location have similar properties (Figure 72), despite coming

from a different location, using a different network and hardware. One hardware issue

encountered was that the RSSI for the data channel were about 60dB higher than

those of the voice channel, and RSSI recordings by other devices. This increase in

RSSI, creates an increase in C2
n. For the plot in Figure 72, 60dB were subtracted

from the data channel RSSI before processing. While complete data from June are

common for both the NEXRAD and scintillometer, November data become more

sparse. Cell phone scintillation is measurable throughout the year. It is unknown if

noise is a greater factor at times when NEXRAD turbulence detection is difficult.
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Figure 73. RSSI and SNR vs time recorded for both the voice and data channels from

11-17 June, 2015.

The distribution of time intervals suggests that the RSSI variation process is not

Poisson distributed. Figure 22 shows four distributions (blue histograms) of time

intervals, τ in seconds, from four different data sets. While the distributions appear

similar, they are significantly more peaked, and have fatter tails than the Poisson dis-

tribution fits (in red). The distribution plots are truncated at τ = 40, but the actual

τ ranged up to several hundred seconds. The non-Poisson distributions are expected,

as turbulence-induced RSSI variations are not independent events. Examination of

other histograms has shown a consistent distribution of τ .

No comparisons have been made between cell phone C2
n and NEXRAD C2

n. Previ-

ous work has shown that there is a significant correlation between the radar and cell

phone C2
n, and C2

n processed using the new technique (and the reasonable -60dBm

〈RSSI〉 values) gives C2
n magnitudes similar to those predicted by NWP and RF

(N, ev, P ) using the baselining or wavelength correction technique, it should thus be

possible to estimate scintillomoter C2
n from the cell phone.
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5.5 Which Gradients are Important Where

The impact of adding variables ties in closely with the difference between using

Ciddor N vs RF N . It was seen in plots like those in Figure 74, that adding variables

caused the Ciddor N results to more accurately predict what the 880nm scintillometer

would measure, and using RF N caused the results to head toward what the radar

(and cell phones) measure for C2
n. It is quite apparent that RMSE is improved

significantly when adding vapor pressure, when using the appropriate equation. The

pressure term also helps, but its improvement is less significant.

Figure 74. Plots show C2
n vs time (x-axis ticks are at sunrise and sunset times). Blue

dots are C2
n values measured by the scintillometer, and green dots are C2

n estimates
created using the RF N in the left column and Ciddor’s N equation in the right column.
The top row estimates C2

n using potential temperature gradients alone. The middle row
adds potential vapor pressure gradients to the estimation, and the bottom row adds
the non-hydrostatic pressure gradients to the estimation. Blue dots are scintillometer
based C2

n measurements. Data are from 23-31 August 2013 at the Dayton site.

Looking at what happens to radar estimates, we see that pressure is more sig-

nificant in Albuquerque. This is expected based on the Lamb-Oseen circulation re-

lationship (36). Note that Γ is inversely proportional to the square root of density.
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Figure 75. C2
n vs time from the Albuquerque scintillometer (blue dots) and three

NWP/NEXRAD estimation schemes (green dots). Data are taken from 16-22 May,
2013. Times depicted on the axis are local sunrise and sunset. Note that temperature
only estimates (top) tend to over-estimate C2

n at night. Clear skies to scattered clouds
were present on the first day, and the beginning of the second day. Then, conditions
were mostly cloudy to cloudy through the 19th. The 20th was partly cloudy and the 21st

and 22nd were partly cloudy to clear.

Therefore, the lower density air at the Albuquerque site is expected to have a greater

index gradient for the same amount of rotational energy.

There are times when the additional terms worsened agreement, especially when

temperature gradients are so strong that they cause all the C2
n estimates to be too

high. The data used here have not been compared with other sources to verify

that the temperature gradients are especially high, but it has been noted that this

effect seems to occur when NWP estimates gradients under cloudy to overcast skies,

especially at night. Figure 75 shows estimates using all three methods from May

2013 at the Albuquerque site. It can be seen that NWP-based predictions do not

always capture the lower C2
n values present at night. This could also be due to poor

estimates of vertical wind shear or temperature gradients by the NWP model. It has
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Figure 76. C2
n vs time from the Dayton scintillometer (blue dots) and three NW-

P/NEXRAD estimation schemes (green dots). Data are taken from 6-12 October,
2011. Note that estimates tend to follow C2

n well on the first three days, which saw
clear skies. On October 9th skies became mostly-cloudy to overcast.

been noted that cloudy conditions seem to correlate with this problem. For example,

Figure 76 shows data from the Dayton site in October. The first three days were

largely clear, with some periods of partly cloudy skies. On 8 October, skies became

mostly cloudy. The estimation schemes appear to do a better job on the first three

days, and experience overestimation errors on the latter days.

It is apparent from these plots that there are issues with the NWP data during

cloudy periods. A solution is not provided here, but it is noted that while the ad-

ditional terms make the estimate worse, during these periods, it’s only by a small

amount compared to the error in temperature measurement. However, in periods

when the temperature measurement is close, or strongly underestimates C2
n, the ad-

ditional terms can provide significant improvement.
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5.6 Does Baselining Help?

Baselining is an interesting subject because the results did not provide improve-

ment as expected. Based on the RMSE test, baselining helped as much as hurt

agreement. NBEC was also inconclusive, as improvement from baselining, on aver-

age, was within the error-bars of other methods using the same input variables In

either case, the change in overall RMSE or NBEC induced by baselining was minor.

For estimation of scintillometer paths, the baselining appears to have been an extra-

neous step. It was expected that the higher temporal resolution would have improved

RMSE. It certainly looks like the baselined data has behavior which is similar to the

scintillometer (Figure 77).

Consideration of the time uncertainty problem reveals a reason why the baselining

method may not perform well as implemented here. As described in Section 4.4, the

radar file timestamps indicate a time near when radar measurements are taken, but

the actual moment when a volume of air is measured by the radar is uncertain to

within a time on the order of the radar cycle time, 5 to 10 minutes. It is apparent

from the scintillometer data, that C2
n can vary significantly over this period. Until the

radar measurement time can be more accurately determined, the timing uncertainty

will limit the agreement of measured data.

195



www.manaraa.com

Figure 77. C2
n vs time from 6-11 October 2011 at the Dayton site. The blue dots are C2

n

measured by the scintillometer, and the teal stars are the row radar C2
n. The red dots

and green squares in the top plot are estimates of C2
n made using Ciddor N(T, ev, P ) and

RF N(T, ev) + WC(T, ev), respectively. In the lower plots, the original radar C2
n from

the top-plot is then baselined to the Ciddor N(T, ev, P ) and RF N(T, ev) + WC(T, ev)

estimates.

The baseline technique does find utility for applications like the IDM technique.

Here, the improved radar spatial resolution allowed for approximate path weighting

to be applied. The temporal uncertainty still exists. In this case, there is also mea-

surement error introduced from having to chose a method to handle the incomplete

radar data in the path weighting. Application of the IDM to a path closer to the

radar, where more bins are available may alleviate this somewhat.

The baseline technique also provides a method for cell phone based C2
n to be

converted. While the cell phone does not directly measure wind speed, a correction

can be made to Ciddor N(T, ev), which showed good performance for the radar. This
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would allow the high temporal resolution of the cell phone to be used immediately.

It may be possible to predict the pressure gradients from NWP as well. This was

recently shown to be possible using a non-hydrostatic model in [45]. Additionally,

NEXRAD can be used as described here, with the cell phone providing a higher

temporal resolution of C2
n variation. Cross-correlation techniques with cell phone

data may also allow for the radar time to be more accurately determined.
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VI. Conclusions and Future Work

6.1 Conclusions

This research has developed the first method which allows for accurate estimation

of visible/IR C2
n remotely, passively, and in a volumetric sense with useful spatial

and temporal resolution. In addition to the technical contributions which follow,

this presents a new capability for DE, imaging, and optical communications system

development. The research here can be applied directly to available radar, NWP, and

cell phone systems, or used to develop more capable systems based on the limitations

of current systems which were identified in this work.

Several new contributions have arisen from this work. The most well-established

and significant contribution is demonstrating that Ciddor’s equation should be used

as the refractivity model when calculating C2
n via Tatarskii’s method. Closely related

to this contribution, is demonstration that under many conditions, IR C2
n does not de-

pend on temperature perturbations alone. Based on these contributions, an improved

wavelength correction has been developed along with several methods which can com-

bine freely available NEXRAD and NWP data into volumetric C2
n measurements, and

a way ahead for using emitters of opportunity to measure C2
n. The final contribution

is the investigation into non-hydrostatic pressure gradients and a suggested model for

these pressure perturbations.

Inclusion of additional terms does not agree well with observations when RF reflec-

tivity models are used. This supports the conventional approach of only considering

temperature perturbations when estimating C2
n for the visible and IR regime. Use of

Ciddor N(T ) when determining C2
n likewise produces poorer results than RF N(T ).

It is only when additional terms are included and Ciddor’s equations are applied

that agreement begins to improve. Ciddor N(T, ev) provides a significant reduction
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of RMSE, and improved NBEC. Generally the RMSE in log space was cut in half,

which justifies using Ciddor N(T, ev) (or one of the other, similarly performing meth-

ods) over RF N(T ).

As can be seen from the data, the vapor pressure and pressure term can be safely

ignored when temperature gradients are large. Because use of Ciddor N(T, ev) or

Ciddor N(T, ev, P ) does not significantly change C2
n predicted by the conventional

RF N(T ) when dθ
dz

is large, these results do not refute earlier other works which often

show good agreement using RF N(T ) under these conditions. What the pressure

and vapor pressure terms provide is a reasonable explanation of why observed C2
n

does not drop as much as the temperature-only models predict. The data here shows

that predicted behavior matches observations much better when ev and P terms are

included, and the Ciddor equation is used.

While several methods were developed and compared here, the choice of which to

use and when can be inferred by the RMSE and NBEC results. Some of the methods

used here produced identical results. Using Ciddor N(T, ev, P ) is equivalent to using

RF N(T, ev, P ) + WC(T, ev, P ). Likewise, the results from using Ciddor N(T, ev)

were identical to results from RF N(T, ev) + WC(T, ev). Other techniques, like

baselining did not produce significant differences in RMSE or NBEC. However, other

qualities of these methods may make them more desirable in particular circumstances.

While the wavelength correction of C2
n derived from NEXRAD-measured clear-air

reflections was the original impetus for this research, it turns out that using Ciddor’s

equation with all three terms is a more straightforward approach to estimating optical

C2
n. There are still instances where this correction would be important. NWP forecast,

and measurement devices are often more accurate with respect to temperature than

other quantities like vapor-pressure. Using a multi-wavelength approach, it would be

possible to determine factors like the ratio of C2
T to the humidity based C2

ev and the
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cross-term C2
T,ev

. As NWP can more accurately predict C2
T , the ratio could be used

with multi-wavelength C2
n to estimate the C2

ev and C2
T,ev

terms.

NWP based C2
n estimates can be made without NEXRAD or cell phone inputs.

However, NWP-based estimates will be limited in resolution. The radar is a useful

as a tool as its Doppler spectrum width measurements allow for calculation of the

non-hydrostatic pressure gradients, dP/dz, which improves the resolution of the pres-

sure term. Through baselining, the NEXRAD or cell phone can also provide a high

temporal and spatial resolution C2
n. As the baselining methods are shown to be as

good as or better than using the NWP based methods, they provide an opportunity

to conduct studies such as the path-weighting comparisons from the IDM technique,

which are not possible with the coarse NWP data. The baseline technique met with

mixed results. While it generally improved measurements in the Dayton data, it de-

graded measurements by a similar amount in the Albuquerque data. Because of the

terrain geometry at the Albuquerque site, the amount of surface clutter is likely to

be higher than at the Dayton site. This may cause the “clear air” reflections to be

less correlated with turbulent activity at Albuquerque.

The pressure perturbation contributions was found by bringing together existing

models of refractivity, the Lamb-Oseen vortex, and Tatarskii’s method. The need to

include pressure perturbations matches well with physical theory, past, and current

observations. It is known that real vortices quickly evolve toward an irrotational form

in the absence of forcing mechanisms, so use of the Lamb-Oseen model is appropriate

for well-developed turbulence. While the existence of non-hydrostatic perturbations

is on solid footing, the results are inconclusive with respect to the appropriateness

of the Lamb-Oseen model and the pressure perturbations it predicts. While the

pressure term did improve RMSE overall, the improvement is negligible in some cases,

and moderate at best. There are several reasons, outside of the model validity, as
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to why the improvement is not greater. These include the fact that the pressure

term is often only a small adjustment in the presence of typical temperature and

vapor pressure gradients. Additionally, the characteristic eddy size which was used

may be incorrect. Incorrect or noisy eddy energy measurements could reduce the

effectiveness of the pressure term. NWP gradient overestimation in either dθ/dz or

dev/dz and improper choice of L0 can also degrade the effectiveness of the pressure

term as described at the end of Section 5.2. Previous measurements have shown that

the pressure term is negligible. [17, 25, 27] However, measured evidence of pressure

perturbations have been conducted near the surface where the Lamb-Oseen model

predicts that perturbations would be inconsequential (due to the maximum vortex

size being limited to the height AGL). Where the scintillometer paths took their

measurements (60 to 70m above the surface), there was plenty of room for larger

eddies to form. For this reason the pressure term could take on full value unlike

pressure perturbations measured closer to the surface. Furthermore, the Lamb-Oseen

model predicts that the pressure term is negligible throughout most of the eddy, with

only a relatively small volume possessing a significant pressure gradient, so the mean

perturbation would in fact be negligible. In addition, the modifications of the velocity

structure for a three-dimensional vortex have not been explored here. While support

for the pressure term is weak, there is no evidence that the term should be rejected.

The gradient magnitudes and resulting index perturbations are not unreasonably

large, and the eddy velocity structure provides an explanation why the ε calculated

from Doppler spectrum width may be too large.

The radial distance of both sites causes the radar to integrate over a shell which

is approximately 900 × 900 × 250m. This spatial averaging of a space well outside

the correlation length of PBL turbulence is expected to contribute much more to C2
n

disparity than the path weighting inaccuracy. While the C2
n data volumes show that
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the lower portion of the PBL shows significantly stronger C2
n, it is the opinion of this

author that these values are inflated largely due to ground clutter, and to a lesser

degree biological scatterers. While this provides significant noise in the reflectivity

magnitude measurement, the noise impact on Doppler and Doppler spectrum width

is harder to determine. It is possible that the spectrum width is not as negatively

affected because many of the surface motions are driven by winds, which are tied to

turbulent eddy motion. On the other hand, many surface objects (especially those

which have non-zero Doppler and will thus pass through some of the ground-clutter

filtering) move under their own volition, or in response which does not correlate with

velocities of the turbulent flow. Further research, comparing returns from upper

elevations would be useful for determining how much of an effect surface clutter has

on Doppler and Doppler spectrum width measurements.

6.2 Future Work

There are many questions which this work leaves unanswered. Based on what was

found here, there are many avenues which should be explored. For the sake of clarity,

these are presented in an enumerated list.

1. The wavelength correction needs to be tested against multi-wavelength data.

Dr. Voronsov at UD has done several tests using multiple wavelengths both

on the UD path and at Hawaii [74]. It should now be possible to compare his

results with predictions made by the wavelength correction and NWP.

2. The methods used here did not apply a proper path weighting to the radar C2
n

estimates for the scintillometers. Two options include a proportional weighting

approach like that used in [4]. This weight would be based on the scintillometer

path weighting function. A more crude approach which avoids the difficulty in
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applying a path weighting in the presence of missing data, would be to use the

even path weighting, but only measure over a portion of the middle of the path.

3. An interesting study would be to investigate how the Bragg condition would

change for continuous index gradients like in the Lamb-Oseen model vs the

index step function (i.e. a sphere of material with a constant index which

is different from its surrounding media). This work, like other contemporary

research, assumes that each eddy scatters as if it were a sphere of homogeneous

material placed within an environment with a different index of refraction. Does

scattering based on a more realistic, smoothly varying index still predict that

the dominant back-scattering size is λ/2?

4. Rytov’s expansion, which was developed for optical scintillation due to turbu-

lence is used for conversion of cell phone scintillation. However, it has not been

verified if this is an appropriate approach. A comparison should be made be-

tween Rytov’s development and the cell phone multipath scattering effect to

determine what, if any, changes should be made to the development.

5. Doviak’s volume-weighted scattering function for determining C2
n from dBZ

(10) is based on the assumption that the eddy size equals the scattering size.

However, the Lamb-Oseen model predicts that the scattering size is much less

than the eddy size. Does the relationship in (10) need adjusted to account for the

fact that the dominant scatterers may come from larger eddies than previously

thought? A similar question may be asked for the relationship between Doppler

spectrum width and eddy energy dissipation rate, (34).

6. The cell phone gives both the magnitude of RSSI variation, and when the vari-

ation occurs. As the time between variation carries information about the

process, is there a way to use both forms of information? Is there additional
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information which can be gained beyond C2
n?

7. Is there a correlation between overcast skies and C2
n overestimation? It has

been observed that NWP based C2
n estimates do not agree with scintillometer

measurements during periods of strongly overcast skies or precipitation.

8. The NEXRAD radar returns cross-polarization data, which can be used for hy-

drometer identification. It is often used for identification of bio-clutter (birds),

but bird presence is based on reflectivity which does not correlate well with

populations. Is it possible to use cross-polarization to differentiate between

bio-clutter, ground-clutter, and turbulence?

9. Can the radar demonstrate the Taylor Frozen Flow Hypothesis? Try taking

the radar image, and processing parallel paths from the area around the scin-

tillometer path, taking into account the mean wind. Do we see that paths at

a certain time in the past correlate better? Maybe this is because the radar is

measuring t minutes before the scintillometer.

10. It is apparent that if the Lamb-Oseen velocity structure is even approximately

accurate, that the size of the vortex may be much greater than the size of the

region of strong gradients which interact with propagating waves. The scale

ratio is on the order of 100 to 1000 for eddies investigated here. While this

does not significantly affect comparisons between measurements of C2
n and C2

θ ,

and other structure-function constants, it does suggest that further research

into relationships between these and TKE or ε measurements (and estimates)

should be carried out.

11. The baselining function uses time averaging. While this is good, time-space av-

eraging, where the total reflectivity in a large area over a long time is compared

to NWP may be more appropriate. It would be interesting to rework the radar
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extraction to provide a volume-averaged C2
n along with the path-based C2

n. The

volume average can then be baselined to the NWP C2
n, and the baseline results

applied to the bins along the path. Because the radar would be averaging over

a volume similar to the NWP grid size, this baseline approach may be the more

appropriate form.

12. An important question about path deflection becomes one of time scale. What

is the temporal structure function of path deflection? Slow variations can be

predicted by NWP, but what of the fast changes? The IDM technique can

help estimate these as the total deflection of the hospital image can be used to

determine the magnitude of path deflection. Knowing this can help understand

how important short-term path deflection may be to cell phone scintillation.
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VII. Appendix

7.1 Ciddor Equation Constants

Ciddor’s equations were originally intended to estimate refractivity defined as

NC = (n−1)×108, which makes it two orders of magnitude larger than the convention

used here, N = (n− 1)× 106. In addition, Ciddor uses units of Pascals for pressure

instead of millibars (used throughout the remainder of this work). In this section,

these differences will be addressed. As presented in Section 2.2, Ciddor’s method for

finding refractivity can be cast into the form:

N =
p

ZT
(A+Bxw) (116)

where A and B are wavelength-dependent constants, p is pressure in Pascals (used by

Ciddor instead of millibars which are denoted P ), Z is the compressibility of moist

air, T is temperature in Kelvin, and xw is the molar ratio of water vapor to dry air. In

order to use the wavelength correction, or to estimate C2
n from atmospheric gradients

we wish to know how to find the partial derivatives, ∂N/∂P , ∂N/∂T , and ∂N/∂ev.

These partial are given in terms of N :

∂N

∂P
= N(T, P, ev)fP (N,P, ev),

∂N

∂T
= N(T, P, ev)fT (N,P, ev),

∂N

∂ev
= N(T, P, ev)fev(N,P, ev).

This serves two purposes. First, the scaling factors fP , fT and fev are all unitless,

so the varying definitions of N are handled automatically. Second, the impact of

absorption lines can be approximately included with minimal effort as follows. In-
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clusion of absorption features could be done explicitly using techniques described by

Hill et al [27]. This technique requires some work to implement, however, as relevant

absorption species must be known for a given wavelength, and the absorption specra

data for all relevant species would need to be included in the calculation. Fortunately,

modern software packages like LEEDR [22] exist which automatically handle these

steps and can be used to compute N(〈T 〉 , 〈P 〉 , 〈ev〉 , λ, x1, x2, x3, . . .), the refractivity

at a given wavelength, λ, using local environmental conditions (xi is the molar mix-

ing ratio of the ith atmospheric constituent which has a significant contribution to

N). The approximation used here is based on the difference between the continuum

refractivity, NC , say form Ciddor’s equation, and the actual refractivity, N , which

includes the impact of absorption lines,

N = NC +
∑
i

Ni. (117)

The corresponding partial of N with respect to parameter β is,

∂N

∂β
=
∂NC

∂β
+
∑
i

∂Ni

∂β
. (118)

Using Ciddor’s equation, the scaling factor fC,β can be found,

fC,β =
1

NC

∂NC

∂β
. (119)

When the true refractivity is known, the approximate partial as found from

∂N

∂β
≈ NfC,β. (120)
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The difference between the true partial, and this estimate is then

∂N

∂β
−NfC,β =

∂NC

∂β
+
∑
i

∂Ni

∂β
−

(
NC +

∑
i

Ni

)
1

NC

∂NC

∂β
. (121)

Combining summation terms on the RHS and canceling the ∂NC
∂β

terms leaves

∂N

∂β
−NfC,β =

∑
i

Ni

(
1

Ni

∂Ni

∂β
− 1

NC

∂NC

∂β

)
. (122)

Away from absorption lines, Ni depends to first order on concentration just like

NC . For temperatures and pressures encountered in the lower atmosphere, and for

wavelengths far from absorption lines,

∂Ni∂β −
1

NC

∂NC

∂β
� ∂NC

∂β
(123)

for both temperature, pressure, and vapor pressure. In these same regimes Ni � NC

so the relative error induced by (120) is quite low. The error of the approximation

in (120) can become significant in in regions of strong anomalous absorption. On the

other hand, this technique is not expected to be applied in these regimes, as systems

of interest are usually designed to operate away from absorption features. It is also

sufficient to consider only first order variation of atmospheric quantities. The first

order Taylor-Series expansion of N with respect to the atmospheric variables is

N(T +∆T, P +∆P, ev,∆ev) = N(T, P, ev)+
∂N

∂T
∆T +

∂N

∂P
∆P +

∂N

∂ev
∆ev +C. (124)

For turbulence induced variations of T , P , ev atmospheric deviations are quite small

compared to their mean value, amounting to changes of less than 1/1000 over dis-

tances of a meter. Because the partials, ∂N/∂T , ∂N/∂P , and ∂N/∂ev are also

small (typically between 1 and 10) compared to the typical values of N ≈ 250, this
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approximation holds well for most wavelengths.

In the following equations, there are two forms of temperature. Upper case T

indicates temperature measured in Kelvin, and lower case t indicates temperature in

degrees Centigrade. In Section 2.5 three expressions for finding the partials are given,

∂N

∂p
=
N0

p
− N

Z

dZ

dp
(125)

∂N

∂ev
= N

[(
1− N0

N

)
1

xw
− dZ

dxw

1

Z

]
f

p
(126)

∂N

∂T
= −N

(
1

T
+
dZ

dT

1

Z

)
. (127)

Here again, p is pressure in Pascals (causing the pressure units of (125) to also be

Pascals) and the rest of this work uses millibars. In order to account for this, the

chain rule is used

∂N

∂P
=
∂N

∂p

dp

dP
=
∂N

∂P
100. (128)

The derivatives of compressibility with respect to pressure are

dZ

dp
=

p

T 2
(d+ ex2

w) +
Z − 1

p
, (129)

dZ

dT
=

1− Z −
(
p
T

)2
(d+ ex2

w)

T
− p

T
[a1 + 2a2 + xw(b1 + c1xw)] , (130)

dZ

dxw
=

P

T 2
{2ePxw − T [b0 + b1t+ 2xw(c0 + c2t)]} . (131)

The term f/P is given by

f

p
=
α + βp+ γt2

p
. (132)

The compressibility of moist air is given by

Z = 1− P

T

[
a0 + a1t+ a2t

2 + (b0 + b1t)xw + (c0 + c1t)x
2
w

]
+

(
P

T

)2

(d+ ex2
w). (133)
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Which make use of the following constants:

a0 a1 a2

1.58123× 10−6KPa−1 −2.9331× 10−8Pa−1 1.1043× 10−10K−1Pa−1

b0 b1 c0

5.707× 10−6KPa−1 −2.051× 10−8Pa−1 1.9898× 10−4KPa−1

c1 d e

−2.376× 10−6Pa−1 1.83× 10−11K2Pa−2 −0.765× 10−8K2Pa−2

7.2 Higher Order Numerical Differencing

The method of undetermined coefficients presented here as based on the Air Force

Institute of Technology (AFIT) Math 674 Numerical Analysis for Scientific Comput-

ing course notes.

This approach is based on the more general method of undetermined coefficients

which can be used to find higher order derivatives, or (as in this case) higher order

approximations of lower-order derivatives. In this case, a third order approximation

of the first derivative. Starting with a function , f(x), which has been sampled at

several points, x1, x2, x3, x4, the goal is to have a solution of the form

f ′(x) = a1f(x1) + a2f(x2) + a3f(x3) + a4f(x4) +O(h4). (134)

Here the spacing between sample points is not constant, so h will be the largest

interval between points. A Taylor series expansion of f(xi) can be taken around x

for each of the xi

f(xi) = f(x)+(xi−x)f ′(x)+
(xi − x)2

2
f ′′(x)+

(xi − x)3

6
f ′′′(x)+O((xi−x)4). (135)

This form has the desired value f ′(x) in it. Applying (134) to each expansion of
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f(x1), f(x2), f(x4), f(x3), and grouping by constant terms gives

f ′(x) =a1f(x) +a2f(x) +a3f(x) +a4f(x)+

a1f
′(x)h1 +a2f

′(x)h2 +a3f
′(x)h3 +a4f

′(x)h4+

a1f
′′(x)

h2
1

2
+a2f

′′(x)
h2

2

2
+a3f

′′(x)
h2

3

2
+a4f

′′(x)
h2

4

2
+

a1f
′′′(x)

h3
1

6
+a2f

′′′(x)
h3

2

6
+a3f

′′′(x)
h3

3

6
+a4f

′′′(x)
h3

4

6
+O(h4).

(136)

Here hi = x − xi. (136) will be satisfied if all the rows but the second sum to zero.

This can be expressed as a linear equation,



1 1 1 1

h1 h2 h3 h4

h21
2

h22
2

h23
2

h24
2

h31
6

h32
6

h33
6

h34
6





a1

a2

a3

a4


=



0

1

0

0


(137)

Which gives the coefficients for (134).

7.3 The Stability Correction

In 2014, an attempt was made to correct the difference between the radar C2
n and

scintillometer C2
n based on the amount of refractive bending in the beam, and the

wavelength correction. In practice, this method worked, but is not useful because

the corrective parameters (described later) are highly dependent on the location and

time of year. The work and reasoning is presented here, as the section does highlight

the importance of ground clutter as a noise source.

In the remainder of this section, unless otherwise noted, C2
n will refer to the

log10C
2
n value obtained from NEXRAD reflectivity using (10). This is done to clean

up notation. The difference between the wavelength corrected radar C2
n and the
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scintillometer C2
n is ∆C2

n,1 = C2
n,scint−C2

n,radar. All differences as in ∆C2
n are differences

between the log10C
2
n values. Data used here are from 6-10 October, 2013.

A relationship was sought between the difference in NEXRAD and Scintillometer

data and the atmospheric parameters, dn/dz and dT/dz. dT/dz is approximated

from finite differences in T from the GFS forecast. To calculate dn/dz, a modified

form of (45) was used,

dn

dz
=
dT

dz

(
∂n

∂T
+

∂n

∂P ′
dP ′

dT
+
∂n

∂e′v

de′v
dT

)
. (138)

The different terms used in this form are presented in [9]. The advantage of this

form is that it allows for the wavelength correction to be applied without having

to know any of the local gradients, only the local T , P ′, and e′v. The disadvantage

is that the assumption that deviations of pressure and vapor pressure correlate to

temperature variation is likely to be a poor one. It should be noted that this is

no longer the preferred method for finding refractive bending as it is still primarily

temperature based, and ignores contributions from P ′ and e′v. A better method is

to use the partial derivatives as calculated by LEEDR, and the vertical gradients of

P ′, e′v and T . Note that for refractive bending, hydrostatic and adiabatic effects are

included because the total refraction of the beam is desired. The omission of dP ′/dz

is not expected to impact these results as the variation in dn/dz is important, and

the vertical pressure gradient is dominated by the essentially constant hydrostatic

balance gradient. Omission of de′v/dz may have impacted the data presented here

somewhat.

∆C2
n and dn/dz are both shown in Figure 78. In order to help with the statistical

comparisons, all the values are centered around 0 and normalized. This allows dn/dz

to be directly related to the radar beam height. Positive values indicate sub-refraction

(the radar beam is higher than normal), and negative values indicate super-refraction
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(the radar beam is lower than normal).

Figure 78. Comparison of ∆C2
n = C2

n,scint − C2
n,radar (Top) and the zero-mean stability

parameter: dn/dz − 〈dn/dz〉 (Bottom) vs local time. The mean was removed to aid

in visualizing whether the beam is refracted down more than normal (< 0) or if it is

refracted up more than normal (> 0).

The similarity noted between ∆C2
n and dn/dz led to development of the stability

correction. As shown below, this correction would also attempt to use dT/dz to pro-

vide further correction. Meteorological stability refers to the deviation of the vertical

temperature gradient from neutral buoyancy. In a stable atmosphere, the tempera-

ture drops slowly with height (or increases in some cases) so that an air parcel which

is displaced up cools adiabatically, becomes cooler than the surrounding air, and sinks

back down. In an unstable atmosphere, the temperature drops quickly with height

so when an air parcel is displaced up, it remains warmer than the surrounding air

despite the cooling due to expansion. Because it is warmer, buoyant forces accelerate

the air parcel in the upward direction. Since stability depends on the same factors

as the gradient terms dn/dz and dT/dz, the method of adjusting radar C2
n based on

these gradients was named a stability correction. This correlation raises questions
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about why each of the gradients affect noise in the radar. Two possible mechanisms

are ground clutter, which is directly dependent on dn/dz and turbulence production

via PBL dynamics which are dependent on the atmospheric stability.

Correcting the radar C2
n measurements was attempted with three functions based

on the behavior of dn/dz and dT/dz. After correction, the scintillometer C2
n was

estimated well (to logarithmic accuracy). While an physical explanation could be

made for the first two corrections, the third was based on observed residual differences.

In the end, these fits are specific to this data set, and attempts to use these corrections

on data taken at other times or locations met with poor results. For this reason, these

methods were abandoned.

The stability correction was developed after examining corrections derived from

several atmospheric variables: index of refraction, humidity, wind speed, pressure and

temperature. It was seen that while all of these parameters correlated with ∆C2
n,1 to

some degree, the greatest agreement came when correcting ∆C2
n,1 based on dn/dz,

dT/dz, and the time rate of change of dn/dz. By plotting ∆C2
n,1 as a function of

dn/dz a quadratic dependance could be seen (Figure 79).
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Figure 79. Scatter plot of ∆C2
n,1 as a function of dn/dz. As dn/dz increases, the beam

is expected to go higher. Note that most of the time, the radar is over-estimating the

turbulence (∆C2
n,1 < 0) unless the beam is relatively high.

Further improvement can be found by then computing a new

∆C2
n,2 = ∆C2

n,1 − V GC1

(
dn

dz

)
(139)

where V GC1(dn/dz) is the 1st Vertical Gradient Correction (VGC) based on dn/dz.

The next correction, V GC2 was found by comparing ∆C2
n,2 to dn/dz’s time rate of

change, d/dt(dn/dz) ≡ dṅ/dz. Plotting this ∆C2
n as a a function of dṅ/dz (Figure 80)
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allows a second quadratic relationship to be seen, and at this point is defined

∆C2
n,3 = ∆C2

n,2 − V GC2

(
dṅ

dz

)
. (140)

A final V GC3 was defined and related to dT/dz, but the correlation in this was

extremely weak, and no good physical explanation was given for to relationship. It

is believed that this relationship was happenstance.

Figure 80. Scatter plot of ∆C2
n,2 as a function of dṅ/dz. It can be seen that there is

very different behavior for dṅ/dz > 0, dṅ/dz > 0, and dṅ/dz ≈ 0.

The relationship of the radar signal to dn/dz has reasonable phenomenological

basis. Increased ground clutter in radar measurements is the result of variation of the
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path of the radar’s main beam and its side-lobes in response to changes in dn/dz. The

radar beam, to first order, bends downward from a straight ray path creating an arc

with a curvature radius of about four-thirds of the Earth’s radius [16]. Variations in

the vertical temperature and vapor pressure profiles cause the radar beam curvature to

deviate from its typical arc. When the magnitude of dn/dz is reduced, the radar beam

is said to be sub-refracted resulting in a greater height of the beam. Conversely, when

the magnitude of dn/dz is greater than normal, the beam is super-refracted bending

the beam down toward the ground. Like the main lobe, the diffraction-induced side-

lobes of the radar are super-refracted or sub-refracted. This vertical deviation of the

lobes changes the amount of energy that reflects off the ground and back into the

radar. As a result, the apparent energy in the radar’s main beam can be increased by

super-refraction of the beam. By tracking the relative changes in dn/dz, the amount

of ground returns due to super-refraction were corrected to some degree. This trend

can be seen in Figures 78 and 79, with the exception that for very negative dn/dz

(strong bending, recall dn/dz < 0) the radar begins to do a better job estimating C2
n

again. During these times, the PBL is very stable which affects the thickness of the

PBL as well as Turbulent Kinetic Energy (TKE) production. These processes are

described next and are believed to be counteracting the increased ground clutter.

Vertical stability may also affect ∆C2
n,1. PBL stability affects the production or

loss of TKE and the overall depth of the PBL. It is apparent from Figure 20 that the

upper portion of the radar beam is around one kilometer above the ground. In a stable

atmosphere, the potential temperature increases with height. Under these conditions,

buoyant forces are reduced and TKE production is restricted. This creates a shallow,

stable PBL that may be less than 500m in depth with a “residual” neutrally buoyant

layer from the previous afternoon above it to a depth of approximately 1.5km [66].

Under these conditions, the radar beam and side-lobes are refracted strongly. While
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the ground clutter does increase the radar return, the boundary layer is relatively

thin, so much of the radar’s main beam would be in the residual layer. In this layer

turbulence is significantly weaker, so the radar’s C2
n will be reduced compared with

the scintillometer’s. This explains the behavior on the left side of Figure 79 where

∆C2
n returns to zero despite increased ground clutter. As night progresses, C2

n tends

to increase steadily as wind speeds increase and greater shear production is present in

the TKE budget. Looking at the top plot (∆C2
n vs. time) of Figure 78, this pattern

can be readily seen as ∆C2
n tends to head toward zero during several of the nights.

It was noted that there are different behaviors of ∆C2
n,2 depending on whether

dn/dz is increasing, constant, or decreasing over time. This behavior may suggests

that TKE dynamics are affecting ∆C2
n,2. For constant dn/dz, ∆C2

n,2 ≈ 0. It was

apparent that ∆C2
n,2 was significant when the local temperature gradient was tran-

sitioning between stable and unstable conditions. At dawn, heating of the Earth’s

surface by the sun causes dn/dz to increase toward 0 as the lower layer of the PBL

becomes warmer and the atmosphere becomes more unstable (Figure 78). During

this time, the radar beam begins to rise and receives less ground clutter decreasing

its apparent C2
n. Concurrently, the buoyant production of TKE begins to increase

C2
n measured by both instruments and thickens the PBL. During this time, ∆C2

n

goes through zero to its daytime value where the radar is slightly underestimating

the turbulence. While both the radar and scintillometer C2
n are gradually increasing,

∆C2
n,2 approaches a constant value for positive dṅ/dz. This indicates a lag between

the response of both instruments. This could be a combination of phenomenological

effects based on the location of the scintillometer path and radar beam, as well as

the unknown lag between when the NEXRAD made its measurement, and when its

measurement volumes were compressed and time-stamped.

As dusk approaches and the angle of the sun decreases, the heating of the ground
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slows down. During this time, dn/dz becomes more negative and the radar beam be-

gins to bend down toward the ground. Before the ground clutter becomes significant,

there is a large drop in the scintillometer C2
n but only a slight roll-off in the radar

C2
n. At this time the PBL is quickly becoming stable and buoyant forces now damp

vertical motions, reducing the TKE. Evidence of this process can be seen in the left

side of Figure 80 where ∆Cn,2 increases with dṅ/dz.

As mentioned, the fits shown here did not translate well to other times and lo-

cations. In addition, examination of the C2
n volumes over time show that NEXRAD

systems often see elevated nocturnal C2
n. It may be that part of this effect is the in-

creased ground clutter. However, without reflections off turbulent eddies, it is difficult

to explain the behavior in Figures 79 and 80. The shapes of these correlations suggest

that a portion of the reflected energy, at least, is due to scattering off turbulent eddies

and another portion is ground clutter.

219



www.manaraa.com

Bibliography

1. Randall J. Allis and Billy D. Felton. Numerical simulations of optical turbulence
using an advanced atmospheric prediction model: Implications for adaptive optics
design. In Proceedings of the Advanced Maui Optical and Space Surveillance
Technologies Conference, Wailea, Hawaii, September 9-12 2014.

2. Randall J. Allis and Billy D. Felton. Validation of optical turbulence simulations
from a numerical weather prediction model in support of adaptive optics design.
In International Conference on Space Optical Systems and Applications (ICSOS),
pages S2–3, Kobe, Japan, May 7-9 2014.

3. R. W. Astheimer. The remote detection of clear air turbulence by infrared radi-
ation. Applied Optics, 9(8):1789–1797, August 1970.

4. Santasri Basu, Lee Burchett, Jack McCrae, and Steven Fiorino. Comparison
of the path-weighted C2

n derived from time-lapse imagery and weather radar.
In Proceedings of the 2016 IEEE Aerospace Conference, 2016. Accepted Paper
2372 for Session 5.04 Atmospheric Turbulence: Propagation, Phenomenology,
Measurement, Mitigation.

5. A. Berk, C. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee,
M. Fox, S. M. Adler-Golden, J. H. Chetwind, M. L. Hoke, R. B. Lockwood, J. A.
Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle. Modtran
2006 update. In Proc. SPIE, volume 6233, 2006.

6. Carmelo Peter Bonsignore and Charlie Bellamy. Daily activity and flight be-
haviour of adults of capnodis tenebrionis (coleoptera: Buprestidae). European
Journal of Entomology, 104(3):425–431, 2007.

7. Robert A. Briers, Helen M. Cariss, and John H. R. Gee. Flight activity of adult
stoneflies in relation to weather. Ecological Entomology, 28(1):31–40, 2003.

8. Lee Burchett. Turbulence measurement in the atmospheric boundary layer using
cellular telephone signals. Master’s thesis, Air Force Institute of Technology,
March 2012.

9. Lee R. Burchett and Steven T. Fiorino. Wavelength correction of refractivity
variation measurements. Opt. Express, 21(26):31990–31997, Dec 2013.

10. Lee R. Burchett, Steven T. Fiorino, and Matthew Buchanan. Automation of C2
n

profile extraction from weather radar images. In Linda M. Wasiczko Thomas;
Earl J. Spillar, editor, Atmospheric Propagation IX, volume 8380, May 7 2012.

11. Cedar Lake Ventures, Inc. Weatherspark beta, averages. Website, November
2015. https://weatherspark.com/.

220



www.manaraa.com

12. N. Blaustein & C. G. Christoddoulou. Radio Propagation and Adaptive Antennas
for Wireless Communication Links. John Wiley & Sons, Inc., Hoboken, New
Jersery, 2007.

13. Philip E. Ciddor. Refractive index of air: new equations for the visible and near
infrared. Applied Optics, 35(9):1566–1573, 20 March 1996.

14. S. F. Clifford and L. Lading. Monostatic diffraction-limited lidars: the impact of
optical refractive turbulence. Appl. Opt., 22(11):1696–1701, Jun 1983.

15. J. Jean Cohen. Demonstration and verification of a broad spectrum anomalous
dispersion effects tool for index of refraction and optical turbulence calculations.
Master’s thesis, Air Force Institute of Technology, March 2009.

16. R. J. Doviak and D. S. Zrnic. Doppler Radar and Weather Observations. Aca-
demic Press, Inc., San Diego, California, 1993.

17. J. A. Elliott. Microscale pressure fluctuations measured within the lower atmo-
spheric boundary layer. Journal of Fluid Mechanics, 53:351–384, 5 1972.

18. Patrick Feneyrou, Jean-Claude Lehureau, and Hervé Barny. Performance eval-
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